Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Eng ; 49: 178-191, 2018 09.
Article in English | MEDLINE | ID: mdl-30138679

ABSTRACT

Metabolic engineering has been vital to the development of industrial microbes such as the yeast Saccharomyces cerevisiae. However, sequential rounds of modification are often needed to achieve particular industrial design targets. Systems biology approaches can aid in identifying genetic targets for modification through providing an integrated view of cellular physiology. Recently, research into the generation of commercial yeasts that can produce reduced-ethanol wines has resulted in metabolically-engineered strains of S. cerevisiae that are less efficient at producing ethanol from sugar. However, these modifications led to the concomitant production of off-flavour by-products. A combination of transcriptomics, proteomics and metabolomics was therefore used to investigate the physiological changes occurring in an engineered low-ethanol yeast strain during alcoholic fermentation. Integration of 'omics data identified several metabolic reactions, including those related to the pyruvate node and redox homeostasis, as being significantly affected by the low-ethanol engineering methodology, and highlighted acetaldehyde and 2,4,5-trimethyl-1,3-dioxolane as the main off-flavour compounds. Gene remediation strategies were then successfully applied to decrease the formation of these by-products, while maintaining the 'low-alcohol' phenotype. The data generated from this comprehensive systems-based study will inform wine yeast strain development programmes, which, in turn, could potentially play an important role in assisting winemakers in their endeavour to produce low-alcohol wines with desirable flavour profiles.


Subject(s)
Flavoring Agents/metabolism , Genes, Fungal , Genomics , Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Appl Spectrosc ; 66(6): 656-64, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22732536

ABSTRACT

Information relating to tannin concentration in grapes and wine is not currently available simply and rapidly enough to inform decision-making by grape growers, winemakers, and wine researchers. Spectroscopy and chemometrics have been implemented for the analysis of critical grape and wine parameters and offer a possible solution for rapid tannin analysis. We report here the development and validation of an ultraviolet (UV) spectral calibration for the prediction of tannin concentration in red wines. Such spectral calibrations reduce the time and resource requirements involved in measuring tannins. A diverse calibration set (n = 204) was prepared with samples of Australian wines of five varieties (Cabernet Sauvignon, Shiraz, Merlot, Pinot Noir, and Durif), from regions spanning the wine grape growing areas of Australia, with varying climate and soils, and with vintages ranging from 1991 to 2007. The relationship between tannin measured by the methyl cellulose precipitation (MCP) reference method at 280 nm and tannin predicted with a multiple linear regression (MLR) calibration, using ultraviolet (UV) absorbance at 250, 270, 280, 290, and 315 nm, was strong (r(2)val = 0.92; SECV = 0.20 g/L). An independent validation set (n = 85) was predicted using the MLR algorithm developed with the calibration set and gave confidence in the ability to predict new samples, independent of the samples used to prepare the calibration (r(2)val = 0.94; SEP = 0.18 g/L). The MLR algorithm could also predict tannin in fermenting wines (r(2)val = 0.76; SEP = 0.18 g/L), but worked best from the second day of ferment on. This study also explored instrument-to-instrument transfer of a spectral calibration for MCP tannin. After slope and bias adjustments of the calibration, efficient calibration transfer to other laboratories was clearly demonstrated, with all instruments in the study effectively giving identical results on a transfer set.

3.
J Agric Food Chem ; 58(23): 12313-9, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21047137

ABSTRACT

Measuring chemical composition is a common approach to support decisions about allocating foods and beverages to grades related to market value. Red wine is a particularly complex beverage, and multiple compositional attributes are needed to account for its sensory properties, including measurement of key phenolic components such as anthocyanins, total phenolics, and tannin, which are related to color and astringency. Color has been shown to relate positively to red wine grade; however, little research has been presented that explores the relationship between astringency-related components such as total phenolic or tannin concentration and wine grade. The aim of this research has been to investigate the relationship between the wine grade allocations of commercial wineries and total phenolic and tannin concentrations, respectively, in Australian Shiraz and Cabernet Sauvignon wines. Total phenolic and tannin concentrations were determined using the methyl cellulose precipitable (MCP) tannin assay and then compared to wine grade allocations made by winemaker panels during the companies' postvintage allocation process. Data were collected from wines produced by one Australian wine company over the 2005, 2006, and 2007 vintages and by a further two companies in 2007 (total wines = 1643). Statistical analysis revealed a positive trend toward higher wine grade allocation and wines that had higher concentrations of both total phenolics and tannin, respectively. This research demonstrates that for these companies, in general, Cabernet Sauvignon and Shiraz wines allocated to higher market value grades have higher total phenolics and higher tannin concentrations and suggests that these compositional parameters should be considered in the development of future multiparameter decision support systems for relevant commercial red wine grading processes. In addition, both tannin and total phenolics would ideally be included because although, in general, a positive relationship exists between the two parameters, this relationship does not hold for all wine styles.


Subject(s)
Phenols/analysis , Tannins/analysis , Wine/analysis , Color , Fruit/chemistry , Quality Control , Vitis/chemistry , Wine/classification
4.
J Agric Food Chem ; 56(19): 9175-82, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18788746

ABSTRACT

A Shiraz must with low yeast assimilable nitrogen (YAN) was supplemented with two concentrations of diammonium phosphate (DAP) and then fermented with maceration on grape skins. The nonvolatile, volatile, and color composition of the final wines were investigated. Ethanol and residual sugars were not affected by DAP supplementation, while glycerol, SO 2, and residual YAN increased and acetic acid decreased. DAP-supplemented treatments gave rise to higher concentrations of acetates, fatty acids, and fatty acid ethyl esters but lower concentrations of branched-chain fatty acids and their ethyl esters. No major difference between treatments was observed for higher alcohols, monoterpenes, norisoprenoids, and low-molecular-weight sulfur compounds. DAP-supplemented fermentations resulted in wines with higher concentrations of malvidin-3-glucoside, higher color intensity, and altered color tonality. Model aging studies indicated that higher concentrations of esters are still present in wines from the DAP-treated fermentations after aging. DAP supplementation also resulted in increased concentrations of dimethyl sulfide after model aging. It can be concluded that DAP treatment of a low YAN must fermented by maceration on skins can significantly affect wine color, aroma, and flavor.


Subject(s)
Color , Phosphates/administration & dosage , Volatile Organic Compounds/analysis , Wine/analysis , Fermentation , Flavonoids/analysis , Fruit , Nitrogen/analysis , Odorants/analysis , Phenols/analysis , Polyphenols , Vitis
5.
J Agric Food Chem ; 56(17): 7631-6, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18707119

ABSTRACT

Samples (n = 620) of homogenized red grape berries were analyzed using a visible and near-infrared (NIR) spectrophotometer (400-2500 nm) in reflectance. The spectra and the analytical data were used to develop partial least-squares calibrations to predict dry matter (DM) content and condensed tannins (CT) concentrations. The coefficient of determination in cross-validation and the standard error of cross-validation were 0.92 and 0.83% w/w for DM and 0.86 and 0.46 mg/g epicatechin equivalents for CT, respectively. The standard error in prediction was 1.34% w/w for DM and 0.89 mg/g epicatechin equivalents for CT, respectively. By implementing a NIR spectroscopy method to measure DM and CT in red grape homogenates, we have developed an approach that is suited to large-scale compositional analysis in commercial wine production facilities, as it enables the analysis of large numbers of samples needed to stream batches of fruit. From an economical point of view, the calibration models could be achieved with relatively small data sets. Thus, NIR offers a suitable and efficient tool for the simultaneous measurement of DM and CT in addition to other important parameters in red grape homogenates such as total anthocyanins, total soluble solids, and pH, with minimal sample preparation and low cost.


Subject(s)
Fruit/chemistry , Least-Squares Analysis , Proanthocyanidins/analysis , Spectroscopy, Near-Infrared , Vitis/chemistry , Reproducibility of Results
6.
J Agric Food Chem ; 56(14): 5528-37, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18572914

ABSTRACT

Quantification of red grape tannin and red wine tannin using the methyl cellulose precipitable (MCP) tannin assay and the Adams-Harbertson (A-H) tannin assay were investigated. The study allowed for direct comparison between the repeatability of the assays and for the assessment of other practical considerations such as time efficiency, ease of practice, and throughput, and assessed the relationships between tannin quantification by both analytical techniques. A strong correlation between the two analytical techniques was observed when quantifying grape tannin (r(2) = 0.96), and a good correlation was observed for wine tannins (r(2) = 0.80). However, significant differences in the reported tannin values for the analytical techniques were observed (approximately 3-fold). To explore potential reasons for the difference, investigations were undertaken to determine how several variables influenced the final tannin quantification for both assays. These variables included differences in the amount of tannin precipitated (monitored by HPLC), assay matrix variables, and the monomers used to report the final values. The relationship between tannin quantification and wine astringency was assessed for the MCP and A-H tannin assays, and both showed strong correlations with perceived wine astringency (r(2) = 0.83 and r(2) = 0.90, respectively). The work described here gives guidance to those wanting to understand how the values between the two assays relate; however, a conclusive explanation for the differences in values between the MCP and A-H tannin assays remains unclear, and further work in this area is required.


Subject(s)
Fruit/chemistry , Tannins/analysis , Taste , Vitis/chemistry , Wine/analysis , Ammonium Sulfate , Astringents , Chemical Precipitation , Humans , Indicators and Reagents , Methylcellulose , Reproducibility of Results , Serum Albumin, Bovine , Smell
7.
J Agric Food Chem ; 56(8): 2571-80, 2008 Apr 23.
Article in English | MEDLINE | ID: mdl-18376841

ABSTRACT

A rapid technique for the isolation of polymeric polyphenols from red wine has been developed and validated. A copolymer reversed-phase SPE cartridge was utilized in conjunction with predominantly organic eluents to provide three phenolic fractions from red wine without the need for sample pretreatment. The first fraction contained the bulk of the monomeric and oligomeric phenolic material, while the second and third fractions contained the polymeric polyphenolic compounds, as determined by HPLC analysis. The two polymeric polyphenolic fractions differed in their solubility and extent of pigmentation, and the differences appeared to be related to wine age. This method contrasted with other available fractionation techniques because the interfering, nonpolymeric material can be removed in a single wash fraction, while the polymeric material is separated into two distinct fractions based on their diverse physicochemical properties. It is anticipated that the rapid access to discrete polymeric fractions afforded by this method will be of benefit in furthering the understanding of red wine polymeric polyphenols.


Subject(s)
Flavonoids/isolation & purification , Phenols/isolation & purification , Polymers/isolation & purification , Wine/analysis , Chemical Phenomena , Chemistry, Physical , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Phenols/chemistry , Pigments, Biological/analysis , Polymers/chemistry , Polyphenols , Reproducibility of Results , Solubility
8.
J Agric Food Chem ; 55(12): 4651-7, 2007 Jun 13.
Article in English | MEDLINE | ID: mdl-17497877

ABSTRACT

The methyl cellulose precipitable (MCP) tannin assay and a modified version of the Somers and Evans color assay were adapted to high-throughput (HTP) analysis. To improve efficiency of the MCP tannin assay, a miniaturized 1 mL format and a HTP format using 96 well plates were developed. The Somers color assay was modified to allow the standardization of pH and ethanol concentrations of wine samples in a simple one-step dilution with a buffer solution, thus removing inconsistencies between wine matrices prior to analysis and allowing for its adaptation to a HTP format. Validation studies showed that all new formats were efficient, and results were reproducible and analogous to the original formats.


Subject(s)
Phenols/analysis , Tannins/analysis , Vitis/chemistry , Wine/analysis , Catechin/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...