Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 774: 145462, 2021 Jun 20.
Article in English | MEDLINE | ID: mdl-33609824

ABSTRACT

Widespread occurrence of cyanobacterial harmful algal blooms (CyanoHABs) and the associated health effects from potential cyanotoxin exposure has led to a need for systematic and frequent screening and monitoring of lakes that are used as recreational and drinking water sources. Remote sensing-based methods are often used for synoptic and frequent monitoring of CyanoHABs. In this study, one such algorithm - a sub-component of the Cyanobacteria Index called the CIcyano, was validated for effectiveness in identifying lakes with toxin-producing blooms in 11 states across the contiguous United States over 11 bloom seasons (2005-2011, 2016-2019). A matchup data set was created using satellite data from MEdium Resolution Imaging Spectrometer (MERIS) and Ocean Land Colour Imager (OLCI), and nearshore, field-measured Microcystins (MCs) data as a proxy of CyanoHAB presence. While the satellite sensors cannot detect toxins, MCs are used as the indicator of health risk, and as a confirmation of cyanoHAB presence. MCs are also the most common laboratory measurement made by managers during CyanoHABs. Algorithm performance was evaluated by its ability to detect CyanoHAB 'Presence' or 'Absence', where the bloom is confirmed by the presence of the MCs. With same-day matchups, the overall accuracy of CyanoHAB detection was found to be 84% with precision and recall of 87 and 90% for bloom detection. Overall accuracy was expected to be between 77% and 87% (95% confidence) based on a bootstrapping simulation. These findings demonstrate that CIcyano has utility for synoptic and routine monitoring of potentially toxic cyanoHABs in lakes across the United States.


Subject(s)
Cyanobacteria , Microcystins , Algorithms , Harmful Algal Bloom , Lakes
2.
Harmful Algae ; 92: 101706, 2020 02.
Article in English | MEDLINE | ID: mdl-32113598

ABSTRACT

In autumn of 2013 an immense dinoflagellate bloom developed in Kachemak Bay, AK, USA. Much of the Bay was discolored a dark amber color and raised public concerns as small scale fish kills were reported in a few locations. Light microscopy revealed a monospecific bloom of gymnodinoid dinoflagellates that were previously unknown from the Bay. Gene sequencing of SSU rDNA from cells collected from the bloom confirmed the causative species to be Karenia mikimotoi. This represents the first report of a K. mikimotoi bloom in Alaska. After the bloom organism was confirmed, a K. mikimotoi species-specific qPCR assay was developed and used to assess K. mikimotoi abundances in DNA extracted from phytoplankton samples from Kachemak Bay and Lower Cook Inlet (LCI) obtained over a six-year period. The K. mikimotoi abundances were compared with corresponding time series of environmental variables (water temperature, salinity, water column stability, nutrients, precipitation and wind speed) to assess the factors contributing to the development of the bloom. The results showed early bloom development occurred in August when snow melt reduced salinities and increased water column stability during a period of calm winds. Peak bloom concentrations occurred in late September (107 cell eq. L-1) even as water temperatures were decreasing. The bloom gradually declined over the winter but persisted until April of 2014. Karenia mikimotoi cells were not detected two years prior or three years following the bloom, suggesting cells were introduced to Kachemak Bay at a time when conditions allowed K. mikimotoi to thrive.


Subject(s)
Dinoflagellida , Harmful Algal Bloom , Alaska , Animals , Bays , Beer , Dinoflagellida/genetics
3.
Sci Rep ; 9(1): 18310, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797884

ABSTRACT

Cyanobacterial harmful algal blooms (cyanoHABs) are a serious environmental, water quality and public health issue worldwide because of their ability to form dense biomass and produce toxins. Models and algorithms have been developed to detect and quantify cyanoHABs biomass using remotely sensed data but not for quantifying bloom magnitude, information that would guide water quality management decisions. We propose a method to quantify seasonal and annual cyanoHAB magnitude in lakes and reservoirs. The magnitude is the spatiotemporal mean of weekly or biweekly maximum cyanobacteria biomass for the season or year. CyanoHAB biomass is quantified using a standard reflectance spectral shape-based algorithm that uses data from Medium Resolution Imaging Spectrometer (MERIS). We demonstrate the method to quantify annual and seasonal cyanoHAB magnitude in Florida and Ohio (USA) respectively during 2003-2011 and rank the lakes based on median magnitude over the study period. The new method can be applied to Sentinel-3 Ocean Land Color Imager (OLCI) data for assessment of cyanoHABs and the change over time, even with issues such as variable data acquisition frequency or sensor calibration uncertainties between satellites. CyanoHAB magnitude can support monitoring and management decision-making for recreational and drinking water sources.


Subject(s)
Cyanobacteria/growth & development , Environmental Monitoring , Harmful Algal Bloom , Lakes/microbiology , Remote Sensing Technology , Water Quality , Florida , Ohio
4.
ACS Appl Mater Interfaces ; 8(39): 25674-25679, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27661096

ABSTRACT

The kilogram-scale fabrication of V6O13 cathode materials has been notably assisted by in situ thermal gravimetric analysis (TGA)-infrared spectroscopy (IR) technology. This technology successfully identified a residue of ammonium metavanadate in commercial V6O13, which is consistent with the X-ray photoelectron spectroscopy result. Samples of V6O13 materials have been fabricated and characterized by TGA-IR, scanning electron microscopy, and X-ray diffraction. The initial testing results at 125 °C have shown that test cells containing the sample prepared at 500 °C show up to a 10% increase in the initial specific capacity in comparison with commercial V6O13.

5.
Talanta ; 69(4): 829-34, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-18970644

ABSTRACT

The electrochemical characteristics of a novel all diamond fabricated boron-doped diamond microelectrode array (BDD-MEA) are critically appraised. The voltammetric response of simple electron transfer processes has been investigated and found to generate sigmoidal voltammetric curves. Furthermore, the device has been utilized for various analytical applications including, the direct detection of 4-nitrophenol over the concentration range 1.8-9.2muM, manganese over the range 0.1-4.8muM and the indirect determination of sulfide producing a limit of detection of 23muM.

6.
Anal Chem ; 77(11): 3705-8, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15924409

ABSTRACT

We report the development of all-diamond microelectrochemical devices, namely, a microelectrode array (MEA), in which a periodic array structure with well-defined diameters, distance, and hexagonal unit cell pattern is micromachined using a combination of state-of-the-art microwave-induced plasma growth and laser ablation shaping techniques to prepare and coat a patterned boron-doped diamond (BDD) substrate with an intrinsic diamond insulating layer. The active BDD element can be tuned to between 10 and 50 microm in diameter with a 10 times diameter center-to-center distance between two adjacent conducting elements, which are exactly coplanar to the dielectric surroundings. This type of device should enable applications in harsh conditions such as high temperature, high pressure, and resistive media under dynamic flow regimes.

7.
Talanta ; 67(1): 252-8, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-18970164

ABSTRACT

The electrochemical behaviour and cation recognition properties of two oxaferrocene cryptand ligands, 1,1'-[(1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diyl)diethoxy]-3,3',4,4'-tetraphenylferrocene and 1,1'-[(1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)diethoxy]-3,3',4,4'-tetraphenylferrocene, have been characterized in acetonitrile in the presence of Ba(2+) and Na(+) by cyclic voltammetry, square wave voltammetry and a rotating disc electrode. The changes in the redox signals for the cryptates at varying concentrations of the target cations are used as a direct measure of the electronic coupling between the two units, leading to the conclusion that the cryptate formation process proceeds in multiple stages and the ligand offers several binding sites in the complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...