Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Neurophysiol ; 129(6): 1468-1481, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37198134

ABSTRACT

Calyx terminals make afferent synapses with type I hair cells in vestibular epithelia and express diverse ionic conductances that influence action potential generation and discharge regularity in vestibular afferent neurons. Here we investigated the expression of hyperpolarization-activated current (Ih) in calyx terminals in central and peripheral zones of mature gerbil crista slices, using whole cell patch-clamp recordings. Slowly activating Ih was present in >80% calyces tested in both zones. Peak Ih and half-activation voltages were not significantly different; however, Ih activated with a faster time course in peripheral compared with central zone calyces. Calyx Ih in both zones was blocked by 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride (ZD7288; 100 µM), and the resting membrane potential became more hyperpolarized. In the presence of dibutyryl-cAMP (dB-cAMP), peak Ih was increased, activation kinetics became faster, and the voltage of half-activation was more depolarized compared with control calyces. In current clamp, calyces from both zones showed three different categories of firing: spontaneous firing, phasic firing where a single action potential was evoked after a hyperpolarizing pulse, or a single evoked action potential followed by membrane potential oscillations. In the absence of Ih, the latency to peak of the action potential increased; Ih produces a small depolarizing current that facilitates firing by driving the membrane potential closer to threshold. Immunostaining showed the expression of HCN2 subunits in calyx terminals. We conclude that Ih is found in calyx terminals across the crista and could influence conventional and novel forms of synaptic transmission at the type I hair cell-calyx synapse.NEW & NOTEWORTHY Calyx afferent terminals make synapses with vestibular hair cells and express diverse conductances that impact action potential firing in vestibular primary afferents. Conventional and nonconventional synaptic transmission modes are influenced by hyperpolarization-activated current (Ih), but regional differences were previously unexplored. We show that Ih is present in both central and peripheral calyces of the mammalian crista. Ih produces a small depolarizing resting current that facilitates firing by driving the membrane potential closer to threshold.


Subject(s)
Hair Cells, Vestibular , Vestibule, Labyrinth , Animals , Hair Cells, Vestibular/physiology , Neurons, Afferent , Action Potentials/physiology , Membrane Potentials , Mammals
2.
Front Neurosci ; 15: 710321, 2021.
Article in English | MEDLINE | ID: mdl-34580582

ABSTRACT

Inner ear hair cells form synapses with afferent terminals and afferent neurons carry signals as action potentials to the central nervous system. Efferent neurons have their origins in the brainstem and some make synaptic contact with afferent dendrites beneath hair cells. Several neurotransmitters have been identified that may be released from efferent terminals to modulate afferent activity. Dopamine is a candidate efferent neurotransmitter in both the vestibular and auditory systems. Within the cochlea, activation of dopamine receptors may reduce excitotoxicity at the inner hair cell synapse via a direct effect of dopamine on afferent terminals. Here we investigated the effect of dopamine on sodium currents in acutely dissociated vestibular afferent calyces to determine if dopaminergic signaling could also modulate vestibular responses. Calyx terminals were isolated along with their accompanying type I hair cells from the cristae of gerbils (P15-33) and whole cell patch clamp recordings performed. Large transient sodium currents were present in all isolated calyces; compared to data from crista slices, resurgent Na+ currents were rare. Perfusion of dopamine (100 µM) in the extracellular solution significantly reduced peak transient Na+ currents by approximately 20% of control. A decrease in Na+ current amplitude was also seen with extracellular application of the D2 dopamine receptor agonist quinpirole, whereas the D2 receptor antagonist eticlopride largely abolished the response to dopamine. Inclusion of the phosphatase inhibitor okadaic acid in the patch electrode solution occluded the response to dopamine. The reduction in calyx sodium current in response to dopamine suggests efferent signaling through D2 dopaminergic receptors may occur via common mechanisms to decrease excitability in inner ear afferents.

3.
J Neurophysiol ; 124(2): 510-524, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32667253

ABSTRACT

Vestibular afferent neurons convey information from hair cells in the peripheral vestibular end organs to central nuclei. Primary vestibular afferent neurons can fire action potentials at high rates and afferent firing patterns vary with the position of nerve terminal endings in vestibular neuroepithelia. Terminals contact hair cells as small bouton or large calyx endings. To investigate the role of Na+ currents (INa) in firing mechanisms, we investigated biophysical properties of INa in calyx-bearing afferents. Whole cell patch-clamp recordings were made from calyx terminals in thin slices of gerbil crista at different postnatal ages: immature [postnatal day (P)5-P8, young (P13-P15), and mature (P30-P45)]. A large transient Na+ current (INaT) was completely blocked by 300 nM tetrodotoxin (TTX) in mature calyces. In addition, INaT was accompanied by much smaller persistent Na+ currents (INaP) and distinctive resurgent Na+ currents (INaR), which were also blocked by TTX. ATX-II, a toxin that slows Na+ channel inactivation, enhanced INaP in immature and mature calyces. 4,9-Anhydro-TTX (4,9-ah-TTX), which selectively blocks Nav1.6 channels, abolished the enhanced INa in mature, but not immature, calyces. Therefore, Nav1.6 channels mediate a component of INaT and INaP in mature calyces, but are minimally expressed at early postnatal days. INaR was expressed in less than one-third of calyces at P6-P8, but expression increased with development, and in mature cristae INaR was frequently found in peripheral calyces. INaR served to increase the availability of Na+ channels following brief membrane depolarizations. In current clamp, the rate and regularity of action potential firing decreased in mature peripheral calyces following 4,9-ah-TTX application. Therefore, Nav1.6 channels are upregulated during development, contribute to INaT, INaP, and INaR, and may regulate excitability by enabling higher mean discharge rates in a subpopulation of mature calyx afferents.NEW & NOTEWORTHY Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.


Subject(s)
Action Potentials/physiology , Hair Cells, Vestibular/physiology , NAV1.6 Voltage-Gated Sodium Channel/physiology , Sodium Channel Blockers/pharmacology , Sodium , Tetrodotoxin/pharmacology , Vestibular Nerve/physiology , Action Potentials/drug effects , Age Factors , Animals , Gerbillinae , Hair Cells, Vestibular/drug effects , NAV1.6 Voltage-Gated Sodium Channel/drug effects , Vestibular Nerve/drug effects
4.
Front Cell Neurosci ; 12: 423, 2018.
Article in English | MEDLINE | ID: mdl-30487736

ABSTRACT

The vestibular system relays information about head position via afferent nerve fibers to the brain in the form of action potentials. Voltage-gated Na+ channels in vestibular afferents drive the initiation and propagation of action potentials, but their expression during postnatal development and their contributions to firing in diverse mature afferent populations are unknown. Electrophysiological techniques were used to determine Na+ channel subunit types in vestibular calyx-bearing afferents at different stages of postnatal development. We used whole cell patch clamp recordings in thin slices of gerbil crista neuroepithelium to investigate Na+ channels and firing patterns in central zone (CZ) and peripheral zone (PZ) afferents. PZ afferents are exclusively dimorphic, innervating type I and type II hair cells, whereas CZ afferents can form dimorphs or calyx-only terminals which innervate type I hair cells alone. All afferents expressed tetrodotoxin (TTX)-sensitive Na+ currents, but TTX-sensitivity varied with age. During the fourth postnatal week, 200-300 nM TTX completely blocked sodium currents in PZ and CZ calyces. By contrast, in immature calyces [postnatal day (P) 5-11], a small component of peak sodium current remained in 200 nM TTX. Application of 1 µM TTX, or Jingzhaotoxin-III plus 200 nM TTX, abolished sodium current in immature calyces, suggesting the transient expression of voltage-gated sodium channel 1.5 (Nav1.5) during development. A similar TTX-insensitive current was found in early postnatal crista hair cells (P5-9) and constituted approximately one third of the total sodium current. The Nav1.6 channel blocker, 4,9-anhydrotetrodotoxin, reduced a component of sodium current in immature and mature calyces. At 100 nM 4,9-anhydrotetrodotoxin, peak sodium current was reduced on average by 20% in P5-14 calyces, by 37% in mature dimorphic PZ calyces, but by less than 15% in mature CZ calyx-only terminals. In mature PZ calyces, action potentials became shorter and broader in the presence of 4,9-anhydrotetrodotoxin implicating a role for Nav1.6 channels in firing in dimorphic afferents.

5.
J Neurophysiol ; 117(6): 2312-2323, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28298303

ABSTRACT

In the vestibular periphery neurotransmission between hair cells and primary afferent nerves occurs via specialized ribbon synapses. Type I vestibular hair cells (HCIs) make synaptic contacts with calyx terminals, which enclose most of the HCI basolateral surface. To probe synaptic transmission, whole cell patch-clamp recordings were made from calyx afferent terminals isolated together with their mature HCIs from gerbil crista. Neurotransmitter release was measured as excitatory postsynaptic currents (EPSCs) in voltage clamp. Spontaneous EPSCs were classified as simple or complex. Simple events exhibited a rapid rise time and a fast monoexponential decay (time constant < 1 ms). The remaining events, constituting ~40% of EPSCs, showed more complex characteristics. Extracellular Sr2+ greatly increased EPSC frequency, and EPSCs were blocked by the AMPA receptor blocker NBQX. The role of presynaptic Ca2+ channels was assessed by application of the L-type Ca2+ channel blocker nifedipine (20 µM), which reduced EPSC frequency. In contrast, the L-type Ca2+ channel opener BAY K 8644 increased EPSC frequency. Cyclothiazide increased the decay time constant of averaged simple EPSCs by approximately twofold. The low-affinity AMPA receptor antagonist γ-d-glutamylglycine (2 mM) reduced the proportion of simple EPSCs relative to complex events, indicating glutamate accumulation in the restricted cleft between HCI and calyx. In crista slices EPSC frequency was greater in central compared with peripheral calyces, which may be due to greater numbers of presynaptic ribbons in central hair cells. Our data support a role for L-type Ca2+ channels in spontaneous release and demonstrate regional variations in AMPA-mediated quantal transmission at the calyx synapse.NEW & NOTEWORTHY In vestibular calyx terminals of mature cristae we find that the majority of excitatory postsynaptic currents (EPSCs) are rapid monophasic events mediated by AMPA receptors. Spontaneous EPSCs are reduced by an L-type Ca2+ channel blocker and notably enhanced in extracellular Sr2+ EPSC frequency is greater in central areas of the crista compared with peripheral areas and may be associated with more numerous presynaptic ribbons in central hair cells.


Subject(s)
Excitatory Postsynaptic Potentials , Hair Cells, Vestibular/physiology , Receptors, AMPA/metabolism , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Animals , Benzothiadiazines/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Cells, Cultured , Dipeptides/pharmacology , Female , Gerbillinae , Hair Cells, Vestibular/drug effects , Hair Cells, Vestibular/metabolism , Male , Nifedipine/pharmacology , Quinoxalines/pharmacology , Receptors, AMPA/antagonists & inhibitors , Strontium/pharmacology , Synapses/drug effects , Synapses/metabolism , Synapses/physiology
6.
Hear Res ; 338: 40-51, 2016 08.
Article in English | MEDLINE | ID: mdl-26836968

ABSTRACT

During development of vestibular hair cells, K(+) conductances are acquired in a specific pattern. Functionally mature vestibular hair cells express different complements of K(+) channels which uniquely shape the hair cell receptor potential and filtering properties. In amniote species, type I hair cells (HCI) have a large input conductance due to a ubiquitous low-voltage-activated K(+) current that activates with slow sigmoidal kinetics at voltages negative to the membrane resting potential. In contrast type II hair cells (HCII) from mammalian and non-mammalian species have voltage-dependent outward K(+) currents that activate rapidly at or above the resting membrane potential and show significant inactivation. A-type, delayed rectifier and calcium-activated K(+) channels contribute to the outward K(+) conductance and are present in varying proportions in HCII. In many species, K(+) currents in HCII in peripheral locations of vestibular epithelia inactivate more than HCII in more central locations. Two types of inward rectifier currents have been described in both HCI and HCII. A rapidly activating K(+)-selective inward rectifier current (IK1, mediated by Kir2.1 channels) predominates in HCII in peripheral zones, whereas a slower mixed cation inward rectifier current (Ih), shows greater expression in HCII in central zones of vestibular epithelia. The implications for sensory coding of vestibular signals by different types of hair cells are discussed. This article is part of a Special Issue entitled .


Subject(s)
Ear, Inner/physiology , Hair Cells, Vestibular/cytology , Potassium Channels/physiology , Acetylcholine/chemistry , Animals , Birds , Calcium Channels/physiology , Cations , Cell Membrane/physiology , Chick Embryo , Electrophysiological Phenomena , Fishes , Hair Cells, Auditory/cytology , Humans , Membrane Potentials , Mice , Neurons, Afferent/cytology , Neurotransmitter Agents/chemistry , Nitric Oxide/chemistry , Patch-Clamp Techniques , Ranidae , Vestibule, Labyrinth/physiology
7.
Front Syst Neurosci ; 9: 85, 2015.
Article in English | MEDLINE | ID: mdl-26082693

ABSTRACT

Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K(+) channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K(+) channels could help alleviate vestibular dysfunction on earth and in space.

8.
J Neurophysiol ; 113(1): 264-76, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25343781

ABSTRACT

We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action potential firing was observed in 25% of current-clamp recordings and was either regular or irregular in both zones. Firing was abolished when extracellular choline replaced Na(+) but persisted when hair cell mechanotransduction channels or calyx AMPA receptors were blocked. This suggests that ion channels intrinsic to the calyx can generate spontaneous firing. In response to depolarizing voltage steps, outward K(+) currents were observed at potentials above -60 mV. K(+) currents in PZ calyces showed significantly more inactivation than currents in CZ calyces. Underlying K(+) channel populations contributing to these differences were investigated. The KCNQ channel blocker XE991 dihydrochloride blocked a slowly activating, sustained outward current in both PZ and CZ calyces, indicating the presence of KCNQ channels. Mean reduction was greatest in PZ calyces. XE991 also reduced action potential firing frequency in CZ and PZ calyces and broadened mean action potential width. The K(+) channel blocker 4-aminopyridine (10-50 µM) blocked rapidly activating, moderately inactivating currents that were more prevalent in PZ calyces. α-Dendrotoxin, a selective blocker of KV1 channels, reduced outward currents in CZ calyces but not in PZ calyces. Regional variations in K(+) conductances may contribute to different firing responses in calyx afferents.


Subject(s)
Ear, Inner/physiology , Neurons, Afferent/physiology , Potassium/metabolism , 4-Aminopyridine/pharmacology , Action Potentials/drug effects , Animals , Anthracenes/pharmacology , Cells, Cultured , Choline/metabolism , Ear, Inner/anatomy & histology , Ear, Inner/drug effects , Elapid Venoms/pharmacology , Female , Gerbillinae , Male , Mechanotransduction, Cellular/drug effects , Mechanotransduction, Cellular/physiology , Neurons, Afferent/drug effects , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Potassium Channels/metabolism , Receptors, AMPA/metabolism , Sodium/metabolism , Tissue Culture Techniques
9.
Audiol Neurootol ; 18(5): 317-26, 2013.
Article in English | MEDLINE | ID: mdl-24051519

ABSTRACT

Significant ototoxicity limits the use of aminoglycoside (AG) antibiotics. Several mechanisms may contribute to the death of both auditory and vestibular hair cells. In this study the effects of gentamicin and neomycin on K(+) currents in mature and early postnatal type I vestibular hair cells (HCI) were tested directly. The whole-cell patch clamp technique was used to assess the effects of AG and KCNQ channel modulators on K(+) currents (IK) in HCI acutely isolated from gerbil semicircular canals. Extracellular neomycin (1 mM) rapidly reduced peak outward IK by 16 ± 4% (n = 9) in mature HCI (postnatal days, P, 25-66). Gentamicin (5 mM) reduced outward IK by 16 ± 3% (n = 8). A similar reduction in outward current was seen in immature HCI (P5-9) that lacked the low-voltage-activated component of IK observed in mature cells. Intracellular application of gentamicin and neomycin also reduced IK in mature HCI. Modulators of KCNQ channels were used to probe KCNQ channel involvement. The selective KCNQ antagonist XE991 did not reduce IK and the neomycin-induced reduction in IK was not reversed by the KCNQ agonist flupirtine. Application of intracellular poly-D-lysine to sequester PIP2 did not reduce IK. Application of the K(+) channel blocker 4-aminopyridine (4-AP) strongly reduced IK, and extracellular AG in the presence of 4-AP gave no further inhibition of IK. In summary, AG significantly reduce the 4-AP-sensitive IK in early postnatal and mature HCI. K(+) current inhibition differs from that seen in outer hair cells, since it does not appear to involve PIP2 sequestration or KCNQ channels.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , Hair Cells, Vestibular/drug effects , Neomycin/pharmacology , Potassium Channels/physiology , Animals , Anthracenes/pharmacology , Female , Gerbillinae , Hair Cells, Vestibular/physiology , Male , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology
10.
J Assoc Res Otolaryngol ; 13(6): 745-58, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22825486

ABSTRACT

Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents, voltage-dependent outward K(+) currents and a K(Ca) current. Here, we characterize an inwardly rectifying conductance in gerbil semicircular canal calyx terminals (postnatal days 3-45), sensitive to voltage and to cyclic nucleotides. Using whole-cell patch clamp, we recorded from isolated calyx terminals still attached to their type I hair cells. A slowly activating, noninactivating current (I(h)) was seen with hyperpolarizing voltage steps negative to the resting potential. External Cs(+) (1-5 mM) and ZD7288 (100 µM) blocked the inward current by 97 and 83 %, respectively, confirming that I(h) was carried by hyperpolarization-activated, cyclic nucleotide gated channels. Mean half-activation voltage of I(h) was -123 mV, which shifted to -114 mV in the presence of cAMP. Activation of I(h) was well described with a third order exponential fit to the current (mean time constant of activation, τ, was 190 ms at -139 mV). Activation speeded up significantly (τ=136 and 127 ms, respectively) when intracellular cAMP and cGMP were present, suggesting that in vivo I(h) could be subject to efferent modulation via cyclic nucleotide-dependent mechanisms. In current clamp, hyperpolarizing current steps produced a time-dependent depolarizing sag followed by either a rebound afterdepolarization or an action potential. Spontaneous excitatory postsynaptic potentials (EPSPs) became larger and wider when I(h) was blocked with ZD7288. In a three-dimensional mathematical model of the calyx terminal based on Hodgkin-Huxley type ionic conductances, removal of I(h) similarly increased the EPSP, whereas cAMP slightly decreased simulated EPSP size and width.


Subject(s)
Excitatory Postsynaptic Potentials , Hair Cells, Vestibular/physiology , Ion Channels/physiology , Action Potentials , Animals , Cyclic AMP/pharmacology , Cyclic GMP/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Female , Gerbillinae , Male , Pyrimidines/pharmacology
11.
J Membr Biol ; 244(2): 81-91, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22057903

ABSTRACT

Afferent innervation patterns in the vestibular periphery are complex, and vestibular afferents show a large variation in their regularity of firing. Calyx fibers terminate on type I vestibular hair cells and have firing characteristics distinct from the bouton fibers that innervate type II hair cells. Whole-cell patch clamp was used to investigate ionic currents that could influence firing patterns in calyx terminals. Underlying K(Ca) conductances have been described in vestibular ganglion cells, but their presence in afferent terminals has not been investigated previously. Apamin, a selective blocker of SK-type calcium-activated K(+) channels, was tested on calyx afferent terminals isolated from gerbil semicircular canals during postnatal days 1-50. Lowering extracellular calcium or application of apamin (20-500 nM) reduced slowly activating outward currents in voltage clamp. Apamin also reduced the action potential afterhyperpolarization (AHP) in whole-cell current clamp, but only after the first two postnatal weeks. K(+) channel expression increased during the first postnatal month, and SK channels were found to contribute to the AHP, which may in turn influence discharge regularity in calyx vestibular afferents.


Subject(s)
Action Potentials/physiology , Apamin/pharmacology , Calcium/metabolism , Hair Cells, Vestibular/metabolism , Potassium/metabolism , Presynaptic Terminals/metabolism , Small-Conductance Calcium-Activated Potassium Channels/metabolism , Action Potentials/drug effects , Animals , Animals, Newborn , Bee Venoms/chemistry , Bee Venoms/pharmacology , Calcium/pharmacology , Female , Gerbillinae , Hair Cells, Vestibular/drug effects , Male , Patch-Clamp Techniques , Potassium/pharmacology , Presynaptic Terminals/drug effects , Small-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors
12.
J Assoc Res Otolaryngol ; 11(3): 463-76, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20407915

ABSTRACT

Vestibular hair cells transduce mechanical displacements of their hair bundles into an electrical receptor potential which modulates transmitter release and subsequent action potential firing in afferent neurons. To probe ionic mechanisms underlying sensory coding in vestibular calyces, we used the whole-cell patch-clamp technique to record action potentials and K(+) currents from afferent calyx terminals isolated from the semicircular canals of Mongolian gerbils. Calyx terminals showed minimal current at the mean zero-current potential (-60 mV), but two types of outward K(+) currents were identified at potentials above -50 mV. The first current was a rapidly activating and inactivating K(+) current that was blocked by 4-aminopyridine (4-AP, 2.5 mM) and BDS-I (up to 250 nM). The time constant for activation of this current decreased with membrane depolarization to a minimum value of approximately 1 ms. The 4-AP-sensitive current showed steady-state inactivation with a half-inactivation of approximately -70 mV. A second, more slowly activating current (activation time constant was 8.5 +/- 0.7 ms at -8 mV) was sensitive to TEA (30 mM). The TEA-sensitive current also showed steady-state inactivation with a half-inactivation of -95.4 +/- 1.4 mV, following 500-ms duration conditioning pulses. A combination of 4-AP and TEA blocked approximately 90% of the total outward current. In current clamp, single Na(+)-dependent action potentials were evoked following hyperpolarization to potentials more negative than the resting potential. 4-AP application increased action potential width, whereas TEA both increased the width and greatly reduced repolarization of the action potential.


Subject(s)
Hair Cells, Ampulla/metabolism , Hair Cells, Vestibular/metabolism , Potassium/metabolism , Synapses/metabolism , Action Potentials , Animals , Gerbillinae , Patch-Clamp Techniques , Potassium Channel Blockers
13.
Am J Physiol Regul Integr Comp Physiol ; 298(2): R351-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19939976

ABSTRACT

The rodent vestibular system is immature at birth. During the first postnatal week, vestibular type I and type II hair cells start to acquire their characteristic morphology and afferent innervation. We have studied postnatal changes in the membrane properties of type I hair cells acutely isolated from the semicircular canals (SCC) of gerbils and rats using whole cell patch clamp and report for the first time developmental changes in ionic conductances in these cells. At postnatal day (P) 5 immature hair cells expressed a delayed rectifier K(+) conductance (G(DR)) which activated at potentials above approximately -50 mV in both species. Hair cells also expressed a transient Na(+) conductance (G(Na)) with a mean half-inactivation of approximately -90 mV. At P6 in rat and P7 in gerbil, a low-voltage activated K(+) conductance (G(K,L)) was first observed and conferred a low-input resistance, typical of adult type I hair cells, on SCC type I hair cells. G(K,L) expression in hair cells increased markedly during the second postnatal week and was present in all rat type I hair cells by P14. In gerbil hair cells, G(K,L) appeared later and was present in all type I hair cells by P19. During the third postnatal week, G(Na) expression declined and was absent by the fourth postnatal week in rat and the sixth postnatal week in gerbils. Understanding the ionic changes associated with hair cell maturation could help elucidate development and regeneration mechanisms in the inner ear.


Subject(s)
Hair Cells, Auditory, Inner/metabolism , Potassium Channels/metabolism , Semicircular Canals/growth & development , Semicircular Canals/metabolism , Sodium Channels/metabolism , 4-Aminopyridine/pharmacology , Aging/physiology , Animals , Data Interpretation, Statistical , Electrophysiology , Gerbillinae , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Rats , Semicircular Canals/cytology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Vestibule, Labyrinth/cytology , Vestibule, Labyrinth/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...