Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 84(2): 220-232, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32977344

ABSTRACT

ABSTRACT: A total of 482 veal cutlet, 555 ground veal, and 540 ground beef samples were purchased from retail establishments in the mid-Atlantic region of the United States over a noncontiguous 2-year period between 2014 and 2017. Samples (325 g each) were individually enriched and screened via real-time PCR for all seven regulated serogroups of Shiga toxin-producing Escherichia coli (STEC). Presumptive STEC-positive samples were subjected to serogroup-specific immunomagnetic separation and plated onto selective media. Up to five isolates typical for STEC from each sample were analyzed via multiplex PCR for both the virulence genes (i.e., eae, stx1 and/or stx2, and ehxA) and serogroup-specific gene(s) for the seven regulated STEC serogroups. The recovery rates of non-O157 STEC from veal cutlets (3.94%, 19 of 482 samples) and ground veal (7.03%, 39 of 555 samples) were significantly higher (P < 0.05) than that from ground beef (0.93%, 5 of 540 samples). In contrast, only a single isolate of STEC O157:H7 was recovered; this isolate originated from 1 (0.18%) of 555 samples of ground veal. Recovery rates for STEC were not associated with state, season, packaging type, or store type (P > 0.05) but were associated with brand and fat content (P < 0.05). Pulsed-field subtyping of the 270 viable and confirmed STEC isolates from the 64 total samples testing positive revealed 78 pulsotypes (50 to 80% similarity) belonging to 39 pulsogroups, with ≥90% similarity among pulsotypes within pulsogroups. Multiple isolates from 43 (67.7%) of 64 samples testing positive had an indistinguishable pulsotype. STEC serotypes O26 and O103 were the most prevalent serogroups in beef and veal, respectively. These findings support related findings from regulatory sampling studies over the past decade and confirm that recovery rates for the regulated STEC serogroups are higher for raw veal than for raw beef samples, as was observed in the present study of meat purchased at food retailers in the mid-Atlantic region of the United States.


Subject(s)
Escherichia coli Proteins , Red Meat , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Escherichia coli Proteins/genetics , Meat , Mid-Atlantic Region , Serogroup , United States
2.
Appl Environ Microbiol ; 86(23)2020 11 10.
Article in English | MEDLINE | ID: mdl-32978135

ABSTRACT

Oyster and seawater samples were collected from five sites in the Chesapeake Bay, MD, and three sites in the Delaware Bay, DE, from May to October 2016 and 2017. Abundances and detection frequencies for total and pathogenic Vibrio parahaemolyticus and Vibrio vulnificus were compared using the standard most-probable-number-PCR (MPN-PCR) assay and a direct-plating (DP) method on CHROMagar Vibrio for total (tlh+ ) and pathogenic (tdh+ and trh+ ) V. parahaemolyticus genes and total (vvhA) and pathogenic (vcgC) V. vulnificus genes. The colony overlay procedure for peptidases (COPP) assay was evaluated for total Vibrionaceae DP had high false-negative rates (14 to 77%) for most PCR targets and was deemed unsatisfactory. Logistic regression models of the COPP assay showed high concordances with MPN-PCR for tdh+ and trh+V. parahaemolyticus and vvhA+V. vulnificus in oysters (85.7 to 90.9%) and seawater (81.1 to 92.7%) when seawater temperature and salinity were factored into the model, suggesting that the COPP assay could potentially serve as a more rapid method to detect vibrios in oysters and seawater. Differences in total Vibrionaceae and pathogenic Vibrio abundances between state sampling sites over different collection years were contrasted for oysters and seawater by MPN-PCR. Abundances of tdh+ and trh+V. parahaemolyticus were ∼8-fold higher in Delaware oysters than in Maryland oysters, whereas abundances of vcgC+V. vulnificus were nearly identical. For Delaware oysters, 93.5% were both tdh+ and trh+, compared to only 19.2% in Maryland. These results indicate that pathogenic V. parahaemolyticus was more prevalent in the Delaware Bay than in the Chesapeake Bay.IMPORTANCE While V. parahaemolyticus and V. vulnificus cause shellfish-associated morbidity and mortality among shellfish consumers, current regulatory assays for vibrios are complex, time-consuming, labor-intensive, and relatively expensive. In this study, the rapid, simple, and inexpensive COPP assay was identified as a possible alternative to MPN-PCR for shellfish monitoring. This paper shows differences in total Vibrionaceae and pathogenic vibrios found in seawater and oysters from the commercially important Delaware and Chesapeake Bays. Vibrio parahaemolyticus isolates from the Delaware Bay were more likely to contain commonly recognized pathogenicity genes than those from the Chesapeake Bay.


Subject(s)
Bays/microbiology , Ostreidae/microbiology , Seawater/microbiology , Vibrio parahaemolyticus/isolation & purification , Vibrio vulnificus/isolation & purification , Animals , Colony Count, Microbial , Delaware , Geography , Maryland , Seasons , Vibrio parahaemolyticus/classification , Vibrio vulnificus/classification
3.
Microbiologyopen ; 8(5): e00738, 2019 05.
Article in English | MEDLINE | ID: mdl-30311420

ABSTRACT

The aim of this study was to determine the serogroups, antimicrobial resistance and genetic diversity of Escherichia coli isolates from samples of bivalve mollusks collected along Santa Catarina coast, Brazil, and from the Chesapeake Bay, Maryland, USA. One hundred forty-one E. coli isolates were characterized for serogroups with 181 specific O antisera and antimicrobial susceptibility using the disk diffusion method. The genetic diversity was assessed using pulsed-field gel electrophoresis (PFGE). The results showed that among the isolates, 19.9% were classified as multi-drug resistant (MDR) and resistance was most frequently observed to cephalothin, nitrofurantoin, and ampicillin. The predominant serogroups were O6, O8, and O38. Some serogroups were recognized as pathogenic E. coli. PFGE dendrograms indicated extensive genetic diversity among the isolates. Although characteristics of the E. coli isolates were highly variable, it is important to note that E. coli belonging to pathogenic serogroups and MDR isolates are present in mollusks of both study areas. This is the first report on the phenotypic and genotypic characterization of E. coli from mollusks from Santa Catarina and the Chesapeake Bay that should encourage studies focusing on comparison of isolates across countries.


Subject(s)
Escherichia coli/classification , Escherichia coli/isolation & purification , Genotype , Mollusca/microbiology , Phenotype , Animals , Brazil , Drug Resistance, Bacterial , Electrophoresis, Gel, Pulsed-Field , Escherichia coli/genetics , Escherichia coli/physiology , Genetic Variation , Genotyping Techniques , Maryland , Microbial Sensitivity Tests , Serotyping
4.
J Morphol ; 195(3): 313-325, 1988 Mar.
Article in English | MEDLINE | ID: mdl-29898572

ABSTRACT

The ultrastructure of the Malpighian tubules of the adult desert locust, Schistocerca gregaria, is described. Male and female adults possess about 233 tubules, which empty proximally into the midgut-ileal region of the alimentary canal by way of 12 ampullae. The tubules vary from 10 mm to 23 mm in length. About one third of them are directed anteriorly, attaching distally at the caeca, while the remainder are directed posteriorly, attaching to other tubules, the rectum or large tracheal trunks adjacent to the hindgut. The Malpighian tubules from all locations examined consist of three ultrastructurally distinct regions: proximal, middle, and distal, referring to their position relative to the midgut. All cell types possess ultrastructural features characteristic of ion transporting tissue, i.e., elaboration of the basal and apical membranes and a close association of these membranes with mitochondria. The distal and proximal segments are short (1.5-1.7 mm) and heavily tracheated, and each is composed of a single, distinct cell type. The middle region is the longest segment of the Malpighian tubule and is composed of two distinct cell types, primary and secondary. Both cell types are binucleate. The more numerous primary cells have large nuclei, contain laminate concretions in membrane-bound vacuoles, and possess large microvilli that contain mitochondria. The secondary cells are smaller and possess smaller nuclei. The microvilli are reduced and lack mitochondria. Secondary cells do not contain laminate concretions. The possible compartmentalization of ion and fluid transport function based on segmentation in the Malpighian tubules is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...