Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mass Spectrom ; 414: 45-55, 2017 03.
Article in English | MEDLINE | ID: mdl-29129967

ABSTRACT

A new charge detection mass spectrometer that combines array detection and electrostatic ion trapping to repeatedly measure the masses of single ions is described. This instrument has four detector tubes inside an electrostatic ion trap with conical electrodes (cone trap) to provide multiple measurements of an ion on each pass through the trap resulting in a signal gain over a conventional trap with a single detection tube. Simulations of a cone trap and a dual ion mirror trap design indicate that more passes through the trap per unit time are possible with the latter. However, the cone trap has the advantages that ions entering up to 2 mm off the central axis of the trap are still trapped, the trapping time is less sensitive to the background pressure, and only a narrow range of energies are trapped so it can be used for energy selection. The capability of this instrument to obtain information about the molecular weight distributions of heterogeneous high molecular weight samples is demonstrated with 8 MDa polyethylene glycol (PEG) and 50 and 100 nm amine modified polystyrene nanoparticle samples. The measured mass distribution of the PEG sample is centered at 8 MDa. The size distribution obtained from mass measurements of the 100 nm nanoparticle sample is similar to the size distribution obtained from transmission electron microscopy (TEM) images, but most of the smaller nanoparticles observed in TEM images of the 50 nm nanoparticles do not reach a sufficiently high charge to trigger the trap on a single pass and be detected by the mass spectrometer. With the maximum trapping time set to 100 ms, the charge uncertainty is as low as ±2 charges and the mass uncertainty is approximately 2% for PEG and polystyrene ions.

2.
J Am Soc Mass Spectrom ; 28(10): 2143-2150, 2017 10.
Article in English | MEDLINE | ID: mdl-28717932

ABSTRACT

Orthogonal injection time-of-flight (orthoTOF) mass spectrometry (MS) is the most prevalent form of TOFMS, owing to its greater control over incoming ion energy, the ability to correct for aberrations in incoming ion velocity and position, and its ability to provide an entire mass spectrum within a single scan. However, the duty cycle of orthoTOFMS is low compared with scanning analyzers, which can have 100% duty cycle when measuring a single type of ion. Typical duty cycles for orthoTOFMS range from 1% to 30%, depending on instrument geometry. Generally, as instrument resolution increases, duty cycle decreases. Additionally, the greatest duty cycle is achieved for the highest m/z ion recorded in the spectrum, and decreases for all other ions as a function of m/z. In a prior publication [Loboda, A.V.; Chernushevich, I.V. J. Am. Soc. Mass Spectrom. 20, 1342-1348 (20)], a novel trapping/release method for restoring the duty cycle of a V-geometry orthoTOFMS to near 100% (referred to as "Zeno pulsing") was presented. Here, we apply that method to a W-TOF geometry analyzer with analog detection. Across a m/z range of 100-2000, sensitivity gains of ~5-20 are observed, for total ion currents approaching ~107 ions·s-1. Zeno pulsing, or similar strategies for restoring duty cycle, will continue to be important as instrument resolution in orthoTOFMS is increased through the use of ion mirrors. Graphical Abstract ᅟ.

3.
J Am Soc Mass Spectrom ; 25(12): 2000-8, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24658799

ABSTRACT

The solution dependence of gas-phase unfolding for ubiquitin [M + 7H](7+) ions has been studied by ion mobility spectrometry-mass spectrometry (IMS-MS). Different acidic water:methanol solutions are used to favor the native (N), more helical (A), or unfolded (U) solution states of ubiquitin. Unfolding of gas-phase ubiquitin ions is achieved by collisional heating and newly formed structures are examined by IMS. With an activation voltage of 100 V, a selected distribution of compact structures unfolds, forming three resolvable elongated states (E1-E3). The relative populations of these elongated structures depend strongly on the solution composition. Activation of compact ions from aqueous solutions known to favor N-state ubiquitin produces mostly the E1 type elongated state, whereas activation of compact ions from methanol containing solutions that populate A-state ubiquitin favors the E3 elongated state. Presumably, this difference arises because of differences in precursor ion structures emerging from solution. Thus, it appears that information about solution populations can be retained after ionization, selection, and activation to produce the elongated states. These data as well as others are discussed.


Subject(s)
Gases/chemistry , Ions/chemistry , Ubiquitin/chemistry , Methanol , Models, Molecular , Spectrometry, Mass, Electrospray Ionization , Water
4.
J Am Soc Mass Spectrom ; 24(11): 1654-62, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23733259

ABSTRACT

Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.


Subject(s)
Ions/chemistry , Protein Conformation , Proteins/chemistry , Cations, Divalent/chemistry , Cytochromes c/chemistry , Gases/chemistry , Lactalbumin/chemistry , Metals/chemistry , Solutions , Spectrometry, Mass, Electrospray Ionization/methods , Ubiquitin/chemistry
5.
J Am Soc Mass Spectrom ; 23(3): 553-62, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22203576

ABSTRACT

Effective temperatures of ions during traveling wave ion mobility spectrometry (TWIMS) analysis were measured using singly protonated leucine enkephalin dimer as a chemical thermometer by monitoring dissociation of the dimer into monomer, as well as the subsequent dissociation of monomer into a-, b-, and y-ions, as a function of instrumental parameters. At fixed helium cell and TWIMS cell gas flow rates, the extent of dissociation does not vary significantly with either the wave velocity or wave height, except at low (<500 m/s) wave velocities that are not commonly used. Increasing the flow rate of nitrogen gas into the TWIMS cell and decreasing the flow rate of helium gas into the helium cell resulted in greater dissociation. However, the mobility distributions of the fragment ions formed by dissociation of the dimer upon injection into the TWIMS cell are nearly indistinguishable from those of fragment ions formed in the collision cell prior to TWIMS analysis for all TWIMS experiments. These results indicate that heating and dissociation occur when ions are injected into the TWIMS cell, and that the effective temperature subsequently decreases to a point at which no further dissociation is observed during the TWIMS analysis. An upper limit to the effective ion temperature of 449 K during TWIMS analysis is obtained at a helium flow rate of 180 mL/min, TWIMS flow rate of 80 mL/min, and traveling wave height of 40 V, which is well below previously reported values. Effects of ion heating in TWIMS on gas-phase protein conformation are presented.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/methods , Enkephalin, Leucine/chemistry , Helium/chemistry , Hot Temperature , Ions/chemistry , Protein Conformation , Ubiquitin/chemistry
6.
J Am Soc Mass Spectrom ; 22(11): 1968-77, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21952761

ABSTRACT

Gaseous protein-metal ion and protein-molecule complexes can be readily formed by electrospray ionization (ESI) from aqueous solutions containing proteins and millimolar concentrations of sodium salts of various anions. The extent of sodium and acid molecule adduction to multiply charged protein ions is inversely related and depends strongly on the proton affinity (PA) of the anion, with extensive sodium adduction occurring for anions with PA values greater than ~300 kcal·mol(-1) and extensive acid molecule adduction occurring for anions with PA values less than 315 kcal·mol(-1). The role of the anion on the extent of sodium and acid molecule adduction does not directly follow the Hofmeister series, suggesting that direct protein-ion interactions may not play a significant role in the observed effect of anions on protein structure in solution. These results indicate that salts with anions that have low PA values may be useful solution-phase additives to minimize nonspecific metal ion adduction in ESI experiments designed to identify specific protein-metal ion interactions.


Subject(s)
Anions/chemistry , Proteins/chemistry , Sodium/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Acids/chemistry , Animals , Protons
7.
J Am Soc Mass Spectrom ; 22(11): 1978-90, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21952780

ABSTRACT

The gas-phase conformations of ubiquitin, cytochrome c, lysozyme, and α-lactalbumin ions, formed by electrospray ionization (ESI) from aqueous solutions containing 5 mM ammonium perchlorate, ammonium iodide, ammonium sulfate, ammonium chloride, ammonium thiocyanate, or guanidinium chloride, are examined using traveling-wave ion mobility spectrometry (TWIMS) coupled to time-of-flight (TOF) mass spectrometry (MS). For ubiquitin, cytochrome c, and α-lactalbumin, adduction of multiple acid molecules results in no significant conformational changes to the highest and lowest charge states formed from aqueous solutions, whereas the intermediate charge states become more compact. The transition to more compact conformers for the intermediate charge states occurs with fewer bound H(2)SO(4) molecules than HClO(4) or HI molecules, suggesting ion-ion or salt-bridge interactions are stabilizing more compact forms of the gaseous protein. However, the drift time distributions for protein ions of the same net charge with the highest levels of adduction of each acid are comparable, indicating that these protein ions all adopt similarly compact conformations or families of conformers. No significant change in conformation is observed upon the adduction of multiple acid molecules to charge states of lysozyme. These results show that the attachment of HClO(4), HI, or H(2)SO(4) to multiply protonated proteins can induce compact conformations in the resulting gas-phase protein ions. In contrast, differing Hofmeister effects are observed for the corresponding anions in solution at higher concentrations.


Subject(s)
Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Acids/chemistry , Anions/chemistry , Cytochromes c/chemistry , Gases/chemistry , Iodine Compounds/chemistry , Lactalbumin/chemistry , Muramidase/chemistry , Perchlorates/chemistry , Sulfuric Acids/chemistry , Ubiquitin/chemistry
8.
Anal Chem ; 83(6): 2210-4, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21338067

ABSTRACT

A solution additive has been discovered that can be used to measure the number of basic sites in a peptide or protein using electrospray ionization (ESI) mass spectrometry. Addition of millimolar amounts of perchloric acid (HClO(4)) to aqueous solutions that contain peptides or proteins results in the noncovalent adduction of HClO(4) molecules to the multiply charged ions formed by ESI. For 18 oligopeptides and proteins, ranging in molecular weight from 0.5 to 18.3 kDa, the sum of the number of protons plus maximum number of HClO(4) molecules adducted to the lower charge state ions is equal to the number of basic sites in the molecule. This method provides a rapid means of obtaining information about the composition of a peptide or protein and does not require high-resolution measurements or any instrumental or experimental modifications.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization , Animals , Cattle , Hydrogen-Ion Concentration , Molecular Weight , Perchlorates/chemistry
9.
Anal Chem ; 81(4): 1482-7, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19143495

ABSTRACT

A novel ion mobility spectrometry instrument incorporating a cyclotron geometry drift tube is presented. The drift tube consists of eight regions, four curved drift tubes and four ion funnels. Packets of ions are propagated around the drift tube by changing the drift field at a frequency that is resonant with the ion's drift time through each region. The approach trims each packet of ions as it leaves and enters each new region. An electrostatic gate allows ions to be kept in the drift tube for numerous cycles, increasing the ability to resolve specified ions. We demonstrate the approach by isolating the [M + 2H](2+) or [M + 3H](3+) charge state of substance P as well as individual trisaccharide isomers from a mixture of melezitose and raffinose. Resolving powers in excess of 300 are obtainable with this approach.


Subject(s)
Cyclotrons , Motion , Spectrum Analysis/methods , Isomerism , Raffinose/chemistry , Raffinose/isolation & purification , Time Factors , Trisaccharides/chemistry , Trisaccharides/isolation & purification
10.
J Am Soc Mass Spectrom ; 19(11): 1706-15, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18760624

ABSTRACT

Ion mobility-mass spectrometry (IMS-MS) and molecular modeling techniques have been used to characterize ovalbumin N-linked glycans. Some glycans from this glycoprotein exist as multiple isomeric forms. The gas-phase separation makes it possible to resolve some isomers before MS analysis. Comparisons of experimental cross sections for selected glycan isomers with values that are calculated for iterative structures generated by molecular modeling techniques allow the assignment of sharp features to specific isomers. We focus here on an example glycan set, each having a m/z value of 1046.52 with formula [H5N4+2Na]2+, where H corresponds to a hexose, and N to a N-acetylglucosamine. This glycan appears to exist as three different isomeric forms that are assignable based on comparisons of measured and calculated cross sections. We estimate the relative ratios of the abundances of the three isomers to be in the range of approximately 1.0:1.35:0.85 to approximately 1.0:1.5:0.80. In total, IMS-MS analysis of ovalbumin N-linked glycans provides evidence for 19 different glycan structures corresponding to high-mannose and hybrid type carbohydrates with a total of 42 distinct features related to isomers and/or conformers.


Subject(s)
Mass Spectrometry/methods , Ovalbumin/chemistry , Polysaccharides/chemistry , Isomerism , Models, Molecular , Time Factors
11.
Anal Chem ; 80(6): 1918-27, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18290667

ABSTRACT

A simple method for increasing the efficiency of multidimensional ion mobility spectrometry (IMS-IMS) measurements (as defined by the number of two-dimensional data sets necessary to sample all of the ions in a complex mixture) is illustrated. In this approach, components from a packet containing a mixture of ions are introduced into the first IMS drift region where they are separated based on differences in mobility. At the exit of this region, narrow distributions of ions having identical mobilities are selected, subjected to gentle activation conditions that are intended to induce conformational changes, and transmitted into a second IMS drift region where the new conformations are separated. Here, we describe a simple timing sequence associated with selection and activation of multiple distributions at the entrance of the second drift region in a systematic fashion that improves the efficiency of two-dimensional IMS-IMS by a factor of approximately 8. The method is illustrated by examination of a mixture of tryptic peptides from human hemoglobin.


Subject(s)
Mass Spectrometry/methods , Ions
12.
Article in English | MEDLINE | ID: mdl-20636082

ABSTRACT

Although nonnative protein conformations, including intermediates along the folding pathway and kinetically trapped misfolded species that disfavor the native state, are rarely isolated in the solution phase, they are often stable in the gas phase, where macromolecular ions from electrospray ionization can exist in varying charge states. Differences in the structures of nonnative conformations in the gas phase are often large enough to allow different shapes and charge states to be separated because of differences in their mobilities through a gas. Moreover, gentle collisional activation can be used to induce structural transformations. These new structures often have different mobilities. Thus, there is the possibility of developing a multidimensional separation that takes advantage of structural differences of multiple stable states. This review discusses how nonnative states differ in the gas phase compared with solution and presents an overview of early attempts to utilize and manipulate structures in order to develop ion mobility spectrometry as a rapid and sensitive technique for separating complex mixtures of biomolecules prior to mass spectrometry.


Subject(s)
Chemistry Techniques, Analytical , Ions/chemistry , Proteins/chemistry , Spectrophotometry/methods , Animals , Chromatography, Liquid/methods , Gases , Humans , Hydrogen-Ion Concentration , Mass Spectrometry/methods , Models, Statistical , Movement , Solutions
13.
Anal Chem ; 79(2): 515-22, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17222015

ABSTRACT

Two-dimensional ion mobility spectrometry (IMS-IMS) coupled with mass spectrometry is examined as a means of separating mixtures of tryptic peptides (from myoglobin and hemoglobin). In this study, we utilize two distinct drift regions that are identical in that each contains He buffer gas at 300 K. The two-dimensional advantage is realized by changing the structures of the ions. As ions arrive at the end of the first drift region, those of a specified mobility are selected, exposed to energizing collisions, and then introduced into a second drift region. Upon collisional activation, some ions undergo structural transitions, leading to substantial changes in their mobilities; others undergo only slight (or no) mobility changes. Examination of peak positions and shapes for peptides that are separated in the first IMS dimension indicates experimental peak capacities ranging from approximately 60 to 80; the peak shapes and range of changes in mobility that are observed in the second drift region (after activation) indicate a capacity enhancement ranging from a factor of approximately 7 to 17. Thus, experimental (and theoretical) evaluation of the peak capacity of IMS-IMS operated in this fashion indicates that capacities of approximately 480 to 1360 are accessible for peptides. Molecular modeling techniques are used to simulate the range of structural changes that would be expected for tryptic peptide ions and are consistent with the experimental shifts that are observed.


Subject(s)
Peptide Fragments/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , Buffers , Models, Molecular , Peptide Fragments/chemistry , Trypsin/chemistry
14.
J Am Chem Soc ; 128(50): 15988-9, 2006 Dec 20.
Article in English | MEDLINE | ID: mdl-17165723

ABSTRACT

Here we show experimental evidence for the spontaneous chiral resolution of icosahedral [12Pro+H]+ cluster ion. Molecular simulations reveal that the icosahedron consists of 12 equally spaced prolines where the rigid pyrrolidine ring of each monomer is sticking out of the closed cage. The tightly packed chiral cage traps a single proton in the center cavity. On the other hand, racemic [12Pro+H]+ cluster size exhibits a prismatic structure that can easily incorporate and lose proline monomeric unit sequentially, thus easily forming other geometries. Mechanisms which account for these observations are discussed.


Subject(s)
Proline/chemistry , Hydrogen Bonding , Isomerism , Mass Spectrometry , Models, Molecular , Molecular Conformation
15.
J Proteome Res ; 5(8): 1879-87, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16889409

ABSTRACT

A combination of split-field drift tube/mass spectrometry and isotopic labeling techniques is evaluated as a means of identifying single amino acid polymorphisms (SAAPs) in proteins. The method is demonstrated using cytochromec (equine and bovine) and hemoglobin (bovine and sheep). For these studies, proteins from different species are digested with trypsin, and the peptides are labeled at primary amine groups [using either a light (H(3))- or heavy (D(3))-isotopic reagent]. SAAP analysis is carried out by mixing the light-labeled peptides of one species with the heavy-labeled peptides of the other and electrospraying the resulting mixture into a split-field drift tube/mass spectrometer. Peptides having the same sequence in both species appear as doublets in the mass spectrum [shifted in mass-to-charge (m/z) according to the number of incorporated labels]; additionally, these species have identical mobility distributions. Peptides having sequences that differ by one amino acid appear as peaks in the mass spectrum that are shifted in m/z according to the mass difference associated with the SAAP and the number of incorporated labels. The ion mobility distributions for these peptides (differing by only a single amino acid) can often be rationalized by their expected similarities or differences providing additional evidence that they are related. In all, 12 and 26 peptide variants (between species) corresponding to 5 and 11 amino acid polymorphisms have been identified for the cytochrome c and hemoglobin protein samples, respectively.


Subject(s)
Isotope Labeling/methods , Mass Spectrometry/methods , Polymorphism, Genetic , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/genetics , Animals , Cattle , Cytochromes c/chemistry , Cytochromes c/genetics , Cytochromes c/metabolism , Hemoglobins/chemistry , Hemoglobins/genetics , Hemoglobins/metabolism , Horses , Mass Spectrometry/instrumentation , Molecular Structure , Sheep
16.
J Am Chem Soc ; 128(35): 11713-9, 2006 Sep 06.
Article in English | MEDLINE | ID: mdl-16939296

ABSTRACT

Multidimensional ion mobility spectrometry techniques (IMS-IMS and IMS-IMS-IMS) combined with mass spectrometry are used to study structural transitions of ubiquitin ions in the gas phase. It is possible to select and activate narrow distributions of compact and partially folded conformation types and examine new distributions of structures that are formed. Different compact conformations unfold, producing a range of new partially folded states and three resolvable peaks associated with elongated conformers. Under gentle activation conditions, the final populations of the three elongated forms depend on the initial structures of the selected ions. This requires that some memory of the compact state (most likely secondary structure) is preserved along the unfolding pathway. Activation of selected, partially folded intermediates (formed from specific compact states) leads to elongated state populations that are consistent with the initial selected compact form-evidence that intermediates not only retain elements of initial structure but also are capable of transmitting structure to final states.


Subject(s)
Protein Folding , Ubiquitin/chemistry , Ions/chemistry , Phase Transition , Protein Conformation , Solubility , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry/methods
17.
Anal Chem ; 78(12): 4161-74, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16771547

ABSTRACT

The development of a new ion mobility/mass spectrometry instrument that incorporates a multifield drift tube/ion funnel design is described. In this instrument, individual components from a mixture of ions can be resolved and selected on the basis of mobility differences prior to collisional activation inside the drift tube. The fragment ions that are produced can be dispersed again in a second ion mobility spectrometry (IMS) region prior to additional collisional activation and MS analysis. The result is an IMS-IMS analogue of MS-MS. Here, we describe the preliminary instrumental design and experimental approach. We illustrate the approach by examining the highly characterized bradykinin and ubiquitin systems. Mobility-resolved fragment ions of bradykinin show that b-type ions are readily discernible fragments, because they exist as two easily resolvable structural types. Current limitations and future directions are briefly discussed.


Subject(s)
Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Bradykinin/analysis , Bradykinin/chemistry , Equipment Design , Ions , Ubiquitin/analysis , Ubiquitin/chemistry
18.
Anal Chem ; 78(8): 2802-9, 2006 Apr 15.
Article in English | MEDLINE | ID: mdl-16615796

ABSTRACT

Multidimensional ion mobility spectrometry (IMS-IMS and IMS-IMS-IMS) techniques have been combined with mass spectrometry (MS) and investigated as a means of generating and separating peptide and protein fragment ions. When fragments are generated inside a drift tube and then dispersed by IMS prior to MS analysis, it is possible to observe many features that are not apparent from MS analysis alone. The approach is demonstrated by examining fragmentation patterns arising from electrospray ion distributions of insulin chain B and ubiquitin. The multidimensional IMS approach makes it possible to select individual components for collisional activation and to disperse fragments based on differences in mobility prior to MS analysis. Such an approach makes it possible to observe many features not apparent by MS analysis alone.


Subject(s)
Mass Spectrometry/methods , Peptide Fragments/analysis , Proteins/analysis , Amino Acid Sequence , Insulin/analysis , Insulin/chemistry , Ions , Mass Spectrometry/instrumentation , Molecular Sequence Data , Peptide Fragments/chemistry , Proteins/chemistry , Time Factors , Ubiquitin/analysis , Ubiquitin/chemistry
19.
J Phys Chem B ; 110(13): 7017-21, 2006 Apr 06.
Article in English | MEDLINE | ID: mdl-16571016

ABSTRACT

A new two-dimensional ion mobility spectrometry approach combined with mass spectrometry has been used to examine ubiquitin ions in the gas phase. In this approach ions are separated in an initial drift tube into conformation types (defined by their collision cross sections) and then a gate is used to introduce a narrow distribution of mobility-separated ions into a second drift tube for subsequent separation. The results show that upon selection a narrow peak shape is retained through the second drift tube. This requires that at 300 K the selected distribution does not interconvert substantially within the broader range of structures associated with the conformation type within the approximately 10-20 ms time scale of these experiments. For the [M + 7H]7+ ion, it appears that many ( approximately 5-10) narrow selections can be made across each of the compact, partially-folded, and elongated conformer types, defined previously (Int. J. Mass Spectrom. 1999, 187, 37-47).


Subject(s)
Electrons , Ions/chemistry , Ubiquitin/chemistry , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
20.
J Am Soc Mass Spectrom ; 16(2): 199-207, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15694770

ABSTRACT

Atmospheric pressure (AP) MALDI has been combined with Fourier transform mass spectrometry (FTMS) to obtain the unambiguous characterization of RNA samples modified by solvent accessibility reagents used in structural studies of RNA and protein-RNA complexes. The formation of cation adducts typical of MS analysis of nucleic acids was effectively reduced by extensive washing of the anionic analytes retained onto the probe surface by strong interactions with a cationic layer of poly(diallyldimethylammonium chloride) (PADMAC). This rapid desalting procedure allowed for the detection of DNA and RNA samples in high femtomole quantities distributed over a 4 x 4 mm sample well. AP MALDI-FTMS was shown to provide high-resolution spectra for analytes as large as approximately 6.4 kDa with little or no evidence of metastable decomposition. The absence of significant metastable decay observed for precursor ions selected for tandem experiments offered a further measure of the low energy content typical of ions generated by AP MALDI. This feature proved to be very beneficial in the characterization of chemically modified RNA samples, which become particularly prone to base losses upon alkylation. The high resolution offered by FTMS enabled the application of a data-reduction algorithm capable of rejecting any signal devoid of plausible isotopic distribution, thus facilitating the analysis of complex analyte mixtures produced by nuclease treatment of RNA substrates. Proper selection of nucleases and digestion conditions can ensure the production of hydrolytic fragments of manageable size, which could extend the range of applicability of this bottom-up strategy to the structural investigation of very large RNA and protein-RNA complexes.


Subject(s)
Atmospheric Pressure , Fourier Analysis , RNA/analysis , RNA/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Base Sequence , Mammary Tumor Virus, Mouse/genetics , RNA/genetics , RNA/metabolism , Ribonucleases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...