Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 12(1)2020 Jan 05.
Article in English | MEDLINE | ID: mdl-31948128

ABSTRACT

Here, we fabricate ammonia sensors based on organic transistors by using poly(3-hexylthiophene) (P3HT) blended with tris(pentafluorophenyl)borane (TPFB) as an active layer. As TPFB is an efficient p-type dopant for P3HT, the current level of the blend films can be easily modulated by controlling the blend ratio. The devices exhibit significantly increased on-state and off-state current levels owing to the ohmic current originated from the large number of charge carriers when the active polymer layer contains TPFB with concentrations up to 20 wt % (P3HT:TPFB = 8:2). The current is decreased at 40 wt % of TPFB (P3HT:TPFB = 6:4). The P3HT:TPFB blend with a weight ratio of 9:1 exhibits the highest sensing performances for various concentrations of ammonia. The device exhibits an increased percentage current response compared to that of a pristine P3HT device. The current response of the P3HT:TPFB (9:1) device at 100 ppm of ammonia is as high as 65.8%, 3.2 times that of the pristine P3HT (20.3%). Furthermore, the sensor based on the blend exhibits a remarkable selectivity to ammonia with respect to acetone, methanol, and dichloromethane, owing to the strong interaction between the Lewis acid (TPFB) and Lewis base (ammonia).

2.
Polymers (Basel) ; 11(10)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31618868

ABSTRACT

Surface and nanoscale morphology of thin poly(3-hexylthiophene) (P3HT) films are effectively controlled by blending the polymer with a soluble derivative of fullerene, and then selectively dissolving out the fullerene from the blend films. A combination of the polymer blending with fullerene and a use of diiodooctane (DIO) as a processing additive enhances the molecular ordering of P3HT through nanoscale phase separation, compared to the pristine P3HT. In organic thin-film transistors, such morphological changes in the blend induce a positive effect on the field-effect mobility, as the mobility is ~5-7 times higher than in the pristine P3HT. Simple dipping of the blend films in butyl acetate (BA) causes a selective dissolution of the small molecular component, resulting in a rough surface with nanoscale features of P3HT films. Chemical sensors utilizing these morphological features show an enhanced sensitivity in detection of gas-phase ammonia, water, and ethanol.

SELECTION OF CITATIONS
SEARCH DETAIL
...