Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmgenomics Pers Med ; 2: 9-19, 2009.
Article in English | MEDLINE | ID: mdl-23226031

ABSTRACT

Mu opioid receptor (OPRM1) gene variants, particularly the common A118G single nucleotide polymorphism (SNP), are among the most frequently studied candidate genes associated with opioid dependence. However, despite numerous case-control studies and meta-analyses, no definitive conclusion has been reached regarding the association of the A118G SNP and risk of developing opioid dependence. This study aimed to resolve this discrepancy by reinvestigating the association between A118G SNP allelic, and for the first time, genotype frequencies and opioid dependence. A meta-analysis of sixteen case-control studies of opioid dependence was performed with a total of 5169 subjects. No association between the A118G allele (P = 0.23) and genotype (P = 0.34) frequencies and opioid dependence was found. However, significant heterogeneity between studies precluded highly definitive conclusions. In addition, the possibility that other OPRM1 SNPs albeit rarer may influence the risk of opioid dependence remains to be investigated at this level. Nonetheless, despite no evidence of a direct association with risk of dependence, A118G may still influence the pharmacological response to opioids impacting on an individual's dosage requirements.

2.
J Neurochem ; 97(1): 292-301, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16515546

ABSTRACT

The diversity of peptide ligands for a particular receptor may provide a greater dynamic range of functional responses, while maintaining selectivity in receptor activation. Dynorphin A (Dyn A), and dynorphin B (Dyn B) are endogenous opioid peptides that activate the kappa-opioid receptor (KOR). Here, we characterized interactions of big dynorphin (Big Dyn), a 32-amino acid prodynorphin-derived peptide consisting of Dyn A and Dyn B, with human KOR, mu- (hMOR) and delta- (hDOR) opioid receptors and opioid receptor-like receptor 1 (hORL1) expressed in cells transfected with respective cDNA. Big Dyn and Dyn A demonstrated roughly similar affinity for binding to hKOR that was higher than that of Dyn B. Dyn A was more selective for hKOR over hMOR, hDOR and hORL1 than Big Dyn, while Dyn B demonstrated low selectivity. In contrast, Big Dyn activated G proteins through KOR with much greater potency, efficacy and selectivity than other dynorphins. There was no correlation between the rank order of the potency for the KOR-mediated activation of G proteins and the binding affinity of dynorphins for KOR. The rank of the selectivity for the activation of G proteins through hKOR and of the binding to this receptor also differed. Immunoreactive Big Dyn was detected using the combination of radioimmunoassay (RIA) and HPLC in the human nucleus accumbens, caudate nucleus, hippocampus and cerebrospinal fluid (CSF) with the ratio of Big Dyn and Dyn B being approximately 1:3. The presence in the brain implies that Big Dyn, along with other dynorphins, is processed from prodynorphin and secreted from neurons. Collectively, the high potency and efficacy and the relative abundance suggest that Big Dyn may play a role in the KOR-mediated activation of G proteins.


Subject(s)
Binding, Competitive/physiology , Central Nervous System/metabolism , Dynorphins/cerebrospinal fluid , Receptors, Opioid, kappa/metabolism , Animals , Binding, Competitive/drug effects , Central Nervous System/drug effects , Cerebrospinal Fluid/metabolism , Dynorphins/chemistry , Dynorphins/genetics , Endorphins/cerebrospinal fluid , Endorphins/chemistry , Endorphins/genetics , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Humans , Ligands , Mice , Mice, Knockout , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/drug effects , Neurons/metabolism , Pain/genetics , Pain/metabolism , Pain/physiopathology , Radioimmunoassay , Radioligand Assay , Receptors, Opioid/drug effects , Receptors, Opioid/metabolism , Receptors, Opioid, delta/drug effects , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/drug effects , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/metabolism , Nociceptin Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...