Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene Ther ; 8(15): 1202-6, 2001 Aug.
Article in English | MEDLINE | ID: mdl-11509952

ABSTRACT

In contrast to murine leukaemia virus (MLV)-derived vector systems, vector particles derived from the avian spleen necrosis virus (SNV) have been successfully targeted to subsets of human cells by envelope modification with antibody fragments (scFv). However, an in vivo application of the SNV vector system in gene transfer protocols is hampered by its lack of resistance against human complement. To overcome this limitation we established pseudotyping of MLV vector particles produced in human packaging cell lines with the SNV envelope (Env) protein. Three variants of SNV Env proteins differing in the length of their cytoplasmic domains were all efficiently incorporated into MLV core particles. These pseudotype particles infected the SNV permissive cell line D17 at titers of up to 10(5) IU/ml. A stable packaging cell line (MS4) of human origin released MLV(SNV) pseudotype vectors that were resistant against human complement inactivation. To redirect their tropism to human T cells, MS4 cells were transfected with the expression gene encoding the scFv 7A5 in fusion with the transmembrane domain (TM) of the SNV Env protein, previously shown to retarget SNV vector particles to human lymphocytes. MLV(SNV-7A5)-vector particles released from these cells were selectively infectious for human T cell lines. The data provide a proof of principle for targeting MLV-derived vectors to subpopulations of human cells through pseudotyping with SNV targeting envelopes.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/administration & dosage , Retroviridae/genetics , Transfection/methods , Animals , Cell Line , Dogs , Genetic Engineering/methods , Humans , Leukemia Virus, Murine/genetics
2.
Virology ; 267(2): 229-36, 2000 Feb 15.
Article in English | MEDLINE | ID: mdl-10662618

ABSTRACT

Retroviral vectors derived from amphotropic murine leukemia viruses (MLV) mediate gene transfer into almost all human cells and are thus not suitable for in vivo applications in gene therapy in which cell-specific gene delivery is required. We and others recently reported the generation of MLV-derived vectors pseudotyped by variants of the envelope glycoproteins (Env) of human immunodeficiency virus type 1 (HIV-1), thus displaying the CD4-dependent tropism of the parental lentivirus (Mammano et al., 1997, J. Virol. 71, 3341-3345; Schnierle et al., 1997, Proc. Natl. Acad. Sci. USA 76, 8640-8645). However, because of their HIV-1-derived envelopes these vectors are neutralized by HIV-specific antibodies present in some infected patients. To circumvent this problem, we pseudotyped MLV capsid particles with variants of Env proteins derived from the apathogenic simian immunodeficiency virus (SIVagm) of African green monkeys (AGM; Chlorocebus pygerythrus). Truncation of the C-terminal domain of the transmembrane protein was found to be necessary to allow formation of infectious pseudotype vectors. These [MLV(SIVagm)] vectors efficiently transduced various human CD4-expressing cell lines using the coreceptors CCR5 and Bonzo to enter target cells. Moreover, they were resistant to neutralization by antibodies directed against HIV-1. Therefore, [MLV(SIVagm)] vectors will be useful to study the mechanisms of SIVagm cell entry and for the selective gene transfer into CD4+ T-cells of AIDS patients.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Genetic Vectors/genetics , HIV Infections/blood , Immune Sera/immunology , Leukemia Virus, Murine/genetics , Receptors, G-Protein-Coupled , Amino Acid Sequence , Animals , CD4-Positive T-Lymphocytes/virology , Cell Line , Chlorocebus aethiops , DNA, Recombinant , DNA, Viral/genetics , Gene Expression Regulation , Genes, env/genetics , Genetic Variation , Genetic Vectors/immunology , Giant Cells/virology , HeLa Cells , Humans , Jurkat Cells , Leukemia Virus, Murine/immunology , Mice , Molecular Sequence Data , Neutralization Tests , Receptors, CCR5/physiology , Receptors, CXCR6 , Receptors, Chemokine , Receptors, Cytokine/physiology , Receptors, Virus/physiology , Retroviridae/genetics , Retroviridae/immunology , Simian Immunodeficiency Virus/genetics , Tumor Cells, Cultured
3.
Proc Natl Acad Sci U S A ; 94(16): 8640-5, 1997 Aug 05.
Article in English | MEDLINE | ID: mdl-9238030

ABSTRACT

CD4-expressing T cells in lymphoid organs are infected by the primary strains of HIV and represent one of the main sources of virus replication. Gene therapy strategies are being developed that allow the transfer of exogenous genes into CD4(+) T lymphocytes whose expression might prevent viral infection or replication. Insights into the mechanisms that govern virus entry into the target cells can be exploited for this purpose. Major determinants of the tropism of infection are the CD4 molecules on the surface of the target cells and the viral envelope glycoproteins at the viral surface. The best characterized and most widely used gene transfer vectors are derived from Moloney murine leukemia virus (MuLV). To generate MuLV-based retroviral gene transfer vector particles with specificity of infection for CD4-expressing cells, we attempted to produce viral pseudotypes, consisting of MuLV capsid particles and the surface (SU) and transmembrane (TM) envelope glycoproteins gp120-SU and gp41-TM of HIV type 1 (HIV-1). Full-length HIV-1 envelope glycoproteins were expressed in the MuLV env-negative packaging cell line TELCeB6. Formation of infectious pseudotype particles was not observed. However, using a truncated variant of the transmembrane protein, lacking sequences of the carboxyl-terminal cytoplasmic domain, pseudotyped retroviruses were generated. Removal of the carboxyl-terminal domain of the transmembrane envelope protein of HIV-1 was therefore absolutely required for the generation of the viral pseudotypes. The virus was shown to infect CD4-expressing cell lines, and infection was prevented by antisera specific for gp120-SU. This retroviral vector should prove useful for the study of HIV infection events mediated by HIV-1 envelope glycoproteins, and for the targeting of CD4(+) cells during gene therapy of AIDS.


Subject(s)
CD4 Antigens/immunology , Gene Transfer Techniques , Genetic Vectors , HIV Envelope Protein gp120/genetics , Leukemia Virus, Murine/genetics , Retroviridae Infections/virology , T-Lymphocytes/virology , Tumor Virus Infections/virology , Cell Line , Humans , Reassortant Viruses/genetics , Retroviridae Infections/genetics , Retroviridae Infections/immunology , T-Lymphocytes/immunology , Tumor Virus Infections/genetics , Tumor Virus Infections/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...