Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Med ; 11(3): 602-617, 2022 02.
Article in English | MEDLINE | ID: mdl-34951132

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) patient-derived xenograft (PDX) models hold potential to advance knowledge in HCC biology to help improve systemic therapies. Beside hepatitis B virus-associated tumors, HCC is poorly established in PDX. METHODS: PDX formation from fresh HCC biopsies were obtained and implanted intrahepatically or in subrenal capsule (SRC). Mouse liver injury was induced in immunodeficient Fah-/-  mice through cycling off nitisinone after HCC biopsy implantation, versus continuous nitisinone as non-liver injury controls. Mice with macroscopically detectable PDX showed rising human alpha1-antitrypsin (hAAT) serum levels, and conversely, no PDX was observed in mice with undetectable hAAT. RESULTS: Using rising hAAT as a marker for PDX formation, 20 PDX were established out of 45 HCC biopsy specimens (44%) reflecting the four major HCC etiologies most commonly identified at Memorial SloanKettering similar to many other institutions in the United States. PDX was established only in severely immunodeficient mice lacking lymphocytes and NK cells. Implantation under the renal capsule improved PDX formation two-fold compared to intrahepatic implantation. Two out of 18 biopsies required murine liver injury to establish PDX, one associated with hepatitis C virus and one with alcoholic liver disease. PDX tumors were histologically comparable to biopsy specimens and 75% of PDX lines could be passaged. CONCLUSIONS: Using cycling off nitisinone-induced liver injury, HCC biopsies implanted under the renal capsule of severely immunodeficient mice formed PDX with 57% efficiency as determined by rising hAAT levels. These findings facilitate a more efficient make-up of PDX for research into subset-specific HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Biopsy , Carcinoma, Hepatocellular/pathology , Disease Models, Animal , Heterografts , Humans , Liver Neoplasms/pathology , Mice , United States , Xenograft Model Antitumor Assays
2.
Immunity ; 48(1): 91-106.e6, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29343444

ABSTRACT

CD103+ dendritic cells are critical for cross-presentation of tumor antigens. Here we have shown that during immunotherapy, large numbers of cells expressing CD103 arose in murine tumors via direct differentiation of Ly6c+ monocytic precursors. These Ly6c+CD103+ cells could derive from bone-marrow monocytic progenitors (cMoPs) or from peripheral cells present within the myeloid-derived suppressor cell (MDSC) population. Differentiation was controlled by inflammation-induced activation of the transcription factor p53, which drove upregulation of Batf3 and acquisition of the Ly6c+CD103+ phenotype. Mice with a targeted deletion of p53 in myeloid cells selectively lost the Ly6c+CD103+ population and became unable to respond to multiple forms of immunotherapy and immunogenic chemotherapy. Conversely, increasing p53 expression using a p53-agonist drug caused a sustained increase in Ly6c+CD103+ cells in tumors during immunotherapy, which markedly enhanced the efficacy and duration of response. Thus, p53-driven differentiation of Ly6c+CD103+ monocytic cells represents a potent and previously unrecognized target for immunotherapy.


Subject(s)
Antigen-Presenting Cells/physiology , Monocytes/physiology , Myeloid Cells/metabolism , Neoplasms/immunology , Tumor Suppressor Protein p53/metabolism , Animals , Antigen-Presenting Cells/immunology , Antigens, CD/metabolism , Antigens, Ly/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Flow Cytometry , Humans , Immunotherapy/methods , Integrin alpha Chains/metabolism , Mice , Monocytes/immunology , Myeloid Cells/physiology
3.
Cell ; 162(5): 974-86, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26317466

ABSTRACT

We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a type I interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response 2-fold and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model.


Subject(s)
DNA Methylation/drug effects , Interferon Type I/immunology , Melanoma/immunology , Melanoma/therapy , Animals , Azacitidine/pharmacology , Cell Line, Tumor , DNA Modification Methylases/antagonists & inhibitors , Endogenous Retroviruses/genetics , Female , Humans , Immunotherapy , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Mice , Mice, Inbred C57BL , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , RNA, Double-Stranded/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...