Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hosp Pharm ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789246

ABSTRACT

INTRODUCTION: The COVID-19 pandemic has led to unforeseen and novel manifestations, as illustrated by the management of drug shortages through the development of hospital production of sterile pharmaceutical preparations (P2S). Visual inspection of P2S is a release control whose methods are described in monographs of the European Pharmacopoeia (2.9.20) and the United States Pharmacopeia (1790). However, these non-automated visual methods require training and proficiency testing of personnel. The main objective of this work was to compare the reliability and speed of analysis of two visual methods and an automated method for detecting visible particles by image analysis in P2S. Furthermore, these methods were used to evaluate sources of particulate contamination during pre-production processes (washing, disinfection, depyrogenation) and production (filling, capping). MATERIALS AND METHODS: Three pharmacy technicians examined 41 clear glass vials of type I, 10 and/or 50 mL through manual visual inspection (MVI), semi-automated (SAVI), and automated (AVI) inspection. The vials were distributed as follows: (i) 16 vials of water for injection containing either glass particles (224 µm or 600 µm), stopper fragments, or textile fibres; (ii) five sterile injectable specialties; (iii) 20 vials of water for injection prepared under different pre-production conditions. RESULTS AND DISCUSSION: MVI and SAVI detected 100% of visible particles compared with 28% for AVI, which showed a deficiency in detecting textile fibres. All three methods correctly analysed P2S that did not contain visible particles. The three methods detected particles in vials maintained under International Organization for Standardization (ISO) 9 pre-production conditions. However, detections by (i) MVI and SAVI, and by (ii) AVI of particles contained in vials maintained under ISO 8 pre-production conditions were deemed satisfactory and unsatisfactory, respectively. CONCLUSION: The importance of visual inspection of P2S requires rapid, sensitive, and reliable detection methods. In this context, MVI and SAVI have proven to be more effective than AVI for a more competitive financial, training, and implementation investment.

2.
Eur J Pharm Sci ; 187: 106464, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37169099

ABSTRACT

During the early months of the COVID-19 pandemic, the international medical product supply chain was tight, causing breaks in the availability of neuromuscular blocking agents essential for the treatment of patients in intensive care units. The present study describes the pharmaceutical development of an injectable 2 mg/mL solution of pancuronium bromide (PC) in a very short lapse of time. The sterile solution was compounded into a good manufacturing practice grade A clean room, filtered (0.2 µm) and filled into 10 mL type I glass, manually sealed with bromobutyl rubber stoppers. A novel HPLC-MS stability indicating method for pancuronium quantification and its degradation product was developed and validated. This fast, sensitive and straightforward method was used to study the stability of the formulation using a semi-predictive method, enabling a very fast attribution of a temporary shelf-life, which was confirmed by a classic prospective stability study. The production line and the analytical tools set-up were performed in six weeks and the semi-predictive stability study was conducted in 90 days, allowing us to predict a shelf life, which was successfully confirmed by prospective study. In conclusion, using innovative methods, we were able to rapidly overcome the shortage of a critical drug.


Subject(s)
COVID-19 , Pancuronium , Humans , Chromatography, High Pressure Liquid/methods , Prospective Studies , Pandemics , Drug Stability , Drug Compounding
3.
J Pharm Biomed Anal ; 150: 112-120, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-29220734

ABSTRACT

Several studies have shown that therapeutic drug monitoring of tyrosine kinase inhibitors (TKI) can improve their benefit in cancer. An analytical tool has been developed in order to quantify 17 tyrosine kinase inhibitors and 2 metabolites in human plasma (afatinib, axitinib, bosutinib, crizotinib, dabrafenib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, ponatinib, regorafenib, regorafenib M2, regorafenib M5, ruxolitinib, sorafenib, sunitinib, vandetanib). Drugs were arranged in four groups, according to their plasma concentration range: 0.1-200ng/ml, 1-200ng/ml, 4-800ng/ml and 25-5000ng/ml. Solid phase extraction was used and separation was performed with HPLC using a gradient system on a solid core particle C18 column (5×2.1mm, 1.6µm). Ions were detected with a triple quadrupole mass spectrometry system. This assay allows rapid determination of 19 TKI in less than 5min per run. This high throughput routine method will be useful to adjust doses of oral anticancer drugs in order to improve treatments efficacy.


Subject(s)
Chromatography, High Pressure Liquid/methods , High-Throughput Screening Assays/methods , Protein Kinase Inhibitors/blood , Tandem Mass Spectrometry/methods , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/blood , Dose-Response Relationship, Drug , Drug Monitoring/methods , Humans , Protein Kinase Inhibitors/administration & dosage , Protein-Tyrosine Kinases/antagonists & inhibitors , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL
...