Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Radiat Plasma Med Sci ; 5(3): 373-382, 2021 May.
Article in English | MEDLINE | ID: mdl-33969250

ABSTRACT

X-ray-induced acoustic computed tomography (XACT) is a promising imaging modality to monitor the position of the radiation beam and the deposited dose during external beam radiotherapy delivery. The purpose of this study was to investigate the feasibility of using a transperineal ultrasound transducer array for XACT imaging to guide the prostate radiotherapy. A customized two-dimensional (2D) matrix ultrasound transducer array with 10000 (100×100 elements) ultrasonic sensors with a central frequency of 1 MHz was designed on a 5 cm×5 cm plane to optimize three-dimensional (3D) volumetric imaging. The CT scan and dose treatment plan for a prostate patient undergoing intensity modulated radiation therapy (IMRT) were obtained. In-house simulation was developed to model the time varying X-ray induced acoustic (XA) signals detected by the transperineal ultrasound array. A 3D filtered back projection (FBP) algorithm has been used for 3D XACT image reconstruction. Results of this study will greatly enhance the potential of XACT imaging for real time in vivo dosimetry during radiotherapy.

2.
Med Phys ; 47(9): 4386-4395, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32428252

ABSTRACT

PURPOSE: The aim of this study is to investigate the feasibility of x-ray-induced acoustic computed tomography (XACT) as an image guidance tool for tracking x-ray beam location and monitoring radiation dose delivered to the patient during stereotactic partial breast irradiation (SPBI). METHODS: An in-house simulation workflow was developed to assess the ability of XACT to act as an in vivo dosimetry tool for SPBI. To evaluate this simulation workflow, a three-dimensional (3D) digital breast phantom was created by a series of two-dimensional (2D) breast CT slices from a patient. Three different tissue types (skin, adipose tissue, and glandular tissue) were segmented and the postlumpectomy seroma was simulated inside the digital breast phantom. A treatment plan was made with three beam angles to deliver radiation dose to the seroma in breast to simulate SPBI. The three beam angles for 2D simulations were 17°, 90° and 159° (couch angles were 0 degrees) while the angles were 90 degrees (couch angles were 0°, 27°, 90°) in 3D simulation. A multi-step simulation platform capable of modelling XACT was developed. First, the dose distribution was converted to an initial pressure distribution. The propagation of this pressure disturbance in the form of induced acoustic waves was then modeled using the k-wave MATLAB toolbox. The waves were then detected by a hemispherical-shaped ultrasound transducer array (6320 transducer locations distributed on the surface of the breast). Finally, the time-varying pressure signals detected at each transducer location were used to reconstruct an image of the initial pressure distribution using a 3D time-reversal reconstruction algorithm. Finally, the reconstructed XACT images of the radiation beams were overlaid onto the structure breast CT. RESULTS: It was found that XACT was able to reconstruct the dose distribution of SPBI in 3D. In the reconstructed 3D volumetric dose distribution, the average doses in the GTV (Gross Target Volume) and PTV (Planning Target Volume) were 86.15% and 80.89%, respectively. When compared to the treatment plan, the XACT reconstructed dose distribution in the GTV and PTV had a RMSE (root mean square error) of 2.408 % and 2.299 % over all pixels. The 3D breast XACT imaging reconstruction with time-reversal reconstruction algorithm can be finished within several minutes. CONCLUSIONS: This work explores the feasibility of using the novel imaging modality of XACT as an in vivo dosimeter for SPBI radiotherapy. It shows that XACT imaging can provide the x-ray beam location and dose information in deep tissue during the treatment in real time in 3D. This study lays the groundwork for a variety of future studies related to the use of XACT as a dosimeter at different cancer sites.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Acoustics , Humans , Phantoms, Imaging , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...