Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Physiol ; 601(18): 4135-4150, 2023 09.
Article in English | MEDLINE | ID: mdl-37606613

ABSTRACT

Despite prior efforts to understand and target dynapenia (age-induced loss of muscle strength), this condition remains a major challenge that reduces the quality of life in the aged population. We have focused on the neuromuscular junction (NMJ) where changes in structure and function have rarely been systematically studied as a dynamic and progressive process. Our cross-sectional study found neurotransmission at the male mouse NMJ to be biphasic, displaying an early increase followed by a later decrease, and this phenotype was associated with structural changes to the NMJ. A cross-sectional characterization showed that age-induced alterations fell into four age groups: young adult (3-6 months), adult (7-18 months), early aged (19-24 months), and later aged (25-30 months). We then utilized a small molecule therapeutic candidate, GV-58, applied acutely during the later aged stage to combat age-induced reductions in transmitter release by increasing calcium influx during an action potential, which resulted in a significant increase in transmitter release. This comprehensive study of neuromuscular ageing at the NMJ will enable future research to target critical time points for therapeutic intervention. KEY POINTS: Age-induced frailty and falls are the leading causes of injury-related death and are caused by an age-induced loss of muscle strength due to a combination of neurological and muscular changes. A cross-sectional approach was used to study age-induced changes to the neuromuscular junction in a mouse model, and physiological changes that were biphasic over the ageing time course were found. Changes in physiology at the neuromuscular junction were correlated with alterations in neuromuscular junction morphology. An acutely applied positive allosteric gating modifier of presynaptic voltage-gated calcium channels was tested as a candidate therapeutic strategy that could increase transmitter release at aged neuromuscular junctions. These results provide a detailed time course of age-induced changes at the neuromuscular junction in a mouse model and test a candidate therapeutic strategy for weakness.


Subject(s)
Frailty , Quality of Life , Male , Animals , Mice , Cross-Sectional Studies , Action Potentials , Aging , Disease Models, Animal , Neuromuscular Junction
2.
J Neurophysiol ; 129(5): 1259-1277, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37073966

ABSTRACT

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune-mediated neuromuscular disease thought to be caused by autoantibodies against P/Q-type voltage-gated calcium channels (VGCCs), which attack and reduce the number of VGCCs within transmitter release sites (active zones; AZs) at the neuromuscular junction (NMJ), resulting in neuromuscular weakness. However, patients with LEMS also have antibodies to other neuronal proteins, and about 15% of patients with LEMS are seronegative for antibodies against VGCCs. We hypothesized that a reduction in the number of P/Q-type VGCCs alone is not sufficient to explain LEMS effects on transmitter release. Here, we used a computational model to study a variety of LEMS-mediated effects on AZ organization and transmitter release constrained by electron microscopic, pharmacological, immunohistochemical, voltage imaging, and electrophysiological observations. We show that models of healthy AZs can be modified to predict the transmitter release and short-term facilitation characteristics of LEMS and that in addition to a decrease in the number of AZ VGCCs, disruption in the organization of AZ proteins, a reduction in AZ number, a reduction in the amount of synaptotagmin, and the compensatory expression of L-type channels outside the remaining AZs are important contributors to LEMS-mediated effects on transmitter release. Furthermore, our models predict that antibody-mediated removal of synaptotagmin in combination with disruption in AZ organization alone could mimic LEMS effects without the removal of VGCCs (a seronegative model). Overall, our results suggest that LEMS pathophysiology may be caused by a collection of pathological alterations to AZs at the NMJ, rather than by a simple loss of VGCCs.NEW & NOTEWORTHY We used a computational model of the active zone (AZ) in the mammalian neuromuscular junction to investigate Lambert-Eaton myasthenic syndrome (LEMS) pathophysiology. This model suggests that disruptions in presynaptic active zone organization and protein content (particularly synaptotagmin), beyond the simple removal of presynaptic calcium channels, play an important role in LEMS pathophysiology.


Subject(s)
Lambert-Eaton Myasthenic Syndrome , Animals , Humans , Lambert-Eaton Myasthenic Syndrome/pathology , Calcium Channels/metabolism , Neuromuscular Junction/metabolism , Neurons/metabolism , Calcium Channels, Q-Type , Synaptotagmins , Mammals/metabolism
3.
Hum Mol Genet ; 32(11): 1901-1911, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36757138

ABSTRACT

Spinal muscular atrophy (SMA) is a monogenic disease that clinically manifests as severe muscle weakness owing to neurotransmission defects and motoneuron degeneration. Individuals affected by SMA experience neuromuscular weakness that impacts functional activities of daily living. We have used a mouse model of severe SMA (SMNΔ7) to test whether a calcium channel gating modifier (GV-58), alone or in combination with a potassium channel antagonist (3,4-diaminopyridine; 3,4-DAP), can improve neuromuscular function in this mouse model. Bath application of GV-58 alone or in combination with 3,4-DAP significantly restored neuromuscular transmission to control levels in both a mildly vulnerable forearm muscle and a strongly vulnerable trunk muscle in SMNΔ7 mice at postnatal days 10-12. Similarly, acute subcutaneous administration of GV-58 to postnatal day 10 SMNΔ7 mice, alone or in combination with 3,4-DAP, significantly increased a behavioral measure of muscle strength. These data suggest that GV-58 may be a promising treatment candidate that could address deficits in neuromuscular function and strength and that the addition of 3,4-DAP to GV-58 treatment could aid in restoring function in SMA.


Subject(s)
Activities of Daily Living , Muscular Atrophy, Spinal , Humans , Mice , Animals , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Motor Neurons/physiology , Muscle, Skeletal , Disease Models, Animal , Synaptic Transmission , Survival of Motor Neuron 1 Protein
4.
Biomolecules ; 12(6)2022 05 24.
Article in English | MEDLINE | ID: mdl-35740866

ABSTRACT

The mouse neuromuscular junction (NMJ) has long been used as a model synapse for the study of neurotransmission in both healthy and disease states of the NMJ. Neurotransmission from these neuromuscular nerve terminals occurs at highly organized structures called active zones (AZs). Within AZs, the relationships between the voltage-gated calcium channels and docked synaptic vesicles govern the probability of acetylcholine release during single action potentials, and the short-term plasticity characteristics during short, high frequency trains of action potentials. Understanding these relationships is important not only for healthy synapses, but also to better understand the pathophysiology of neuromuscular diseases. In particular, we are interested in Lambert-Eaton myasthenic syndrome (LEMS), an autoimmune disorder in which neurotransmitter release from the NMJ decreases, leading to severe muscle weakness. In LEMS, the reduced neurotransmission is traditionally thought to be caused by the antibody-mediated removal of presynaptic voltage-gated calcium channels. However, recent experimental data and AZ computer simulations have predicted that a disruption in the normally highly organized active zone structure, and perhaps autoantibodies to other presynaptic proteins, contribute significantly to pathological effects in the active zone and the characteristics of chemical transmitters.


Subject(s)
Autoimmune Diseases , Lambert-Eaton Myasthenic Syndrome , Animals , Autoantibodies , Autoimmune Diseases/pathology , Calcium Channels , Lambert-Eaton Myasthenic Syndrome/pathology , Mice , Neuromuscular Junction/pathology
5.
Front Synaptic Neurosci ; 14: 917285, 2022.
Article in English | MEDLINE | ID: mdl-35769072

ABSTRACT

The general mechanism of calcium-triggered chemical transmitter release from neuronal synapses has been intensely studied, is well-known, and highly conserved between species and synapses across the nervous system. However, the structural and functional details within each transmitter release site (or active zone) are difficult to study in living tissue using current experimental approaches owing to the small spatial compartment within the synapse where exocytosis occurs with a very rapid time course. Therefore, computer simulations offer the opportunity to explore these microphysiological environments of the synapse at nanometer spatial scales and on a sub-microsecond timescale. Because biological reactions and physiological processes at synapses occur under conditions where stochastic behavior is dominant, simulation approaches must be driven by such stochastic processes. MCell provides a powerful simulation approach that employs particle-based stochastic simulation tools to study presynaptic processes in realistic and complex (3D) geometries using optimized Monte Carlo algorithms to track finite numbers of molecules as they diffuse and interact in a complex cellular space with other molecules in solution and on surfaces (representing membranes, channels and binding sites). In this review we discuss MCell-based spatially realistic models of the mammalian and frog neuromuscular active zones that were developed to study presynaptic mechanisms that control transmitter release. In particular, these models focus on the role of presynaptic voltage-gated calcium channels, calcium sensors that control the probability of synaptic vesicle fusion, and the effects of action potential waveform shape on presynaptic calcium entry. With the development of these models, they can now be used in the future to predict disease-induced changes to the active zone, and the effects of candidate therapeutic approaches.

6.
Brain Sci ; 11(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562482

ABSTRACT

Until the recent development of disease-modifying therapeutics, spinal muscular atrophy (SMA) was considered a devastating neuromuscular disease with a poor prognosis for most affected individuals. Symptoms generally present during early childhood and manifest as muscle weakness and progressive paralysis, severely compromising the affected individual's quality of life, independence, and lifespan. SMA is most commonly caused by the inheritance of homozygously deleted SMN1 alleles with retention of one or more copies of a paralog gene, SMN2, which inversely correlates with disease severity. The recent advent and use of genetically targeted therapies have transformed SMA into a prototype for monogenic disease treatment in the era of genetic medicine. Many SMA-affected individuals receiving these therapies achieve traditionally unobtainable motor milestones and survival rates as medicines drastically alter the natural progression of this disease. This review discusses historical SMA progression and underlying disease mechanisms, highlights advances made in therapeutic research, clinical trials, and FDA-approved medicines, and discusses possible second-generation and complementary medicines as well as optimal temporal intervention windows in order to optimize motor function and improve quality of life for all SMA-affected individuals.

7.
J Biol Chem ; 296: 100302, 2021.
Article in English | MEDLINE | ID: mdl-33465376

ABSTRACT

3,4-Diaminopyridine (3,4-DAP) increases transmitter release from neuromuscular junctions (NMJs), and low doses of 3,4-DAP (estimated to reach ∼1 µM in serum) are the Food and Drug Administration (FDA)-approved treatment for neuromuscular weakness caused by Lambert-Eaton myasthenic syndrome. Canonically, 3,4-DAP is thought to block voltage-gated potassium (Kv) channels, resulting in prolongation of the presynaptic action potential (AP). However, recent reports have shown that low millimolar concentrations of 3,4-DAP have an off-target agonist effect on the Cav1 subtype ("L-type") of voltage-gated calcium (Cav) channels and have speculated that this agonist effect might contribute to 3,4-DAP effects on transmitter release at the NMJ. To address 3,4-DAP's mechanism(s) of action, we first used the patch-clamp electrophysiology to characterize the concentration-dependent block of 3,4-DAP on the predominant presynaptic Kv channel subtypes found at the mammalian NMJ (Kv3.3 and Kv3.4). We identified a previously unreported high-affinity (1-10 µM) partial antagonist effect of 3,4-DAP in addition to the well-known low-affinity (0.1-1 mM) antagonist activity. We also showed that 1.5-µM DAP had no effects on Cav1.2 or Cav2.1 current. Next, we used voltage imaging to show that 1.5- or 100-µM 3,4-DAP broadened the AP waveform in a dose-dependent manner, independent of Cav1 calcium channels. Finally, we demonstrated that 1.5- or 100-µM 3,4-DAP augmented transmitter release in a dose-dependent manner and this effect was also independent of Cav1 channels. From these results, we conclude that low micromolar concentrations of 3,4-DAP act solely on Kv channels to mediate AP broadening and enhance transmitter release at the NMJ.


Subject(s)
Amifampridine/pharmacology , Neuromuscular Agents/pharmacology , Neuromuscular Junction/drug effects , Potassium Channel Blockers/pharmacology , Presynaptic Terminals/drug effects , Shaw Potassium Channels/metabolism , Acetylcholine/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression , Male , Mice , Microelectrodes , Neuromuscular Junction/metabolism , Presynaptic Terminals/metabolism , Rana pipiens , Shaw Potassium Channels/antagonists & inhibitors , Shaw Potassium Channels/genetics , Tissue Culture Techniques
8.
J Neurosci ; 40(18): 3504-3516, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32265260

ABSTRACT

The action potential (AP) waveform controls the opening of voltage-gated calcium channels and contributes to the driving force for calcium ion flux that triggers neurotransmission at presynaptic nerve terminals. Although the frog neuromuscular junction (NMJ) has long been a model synapse for the study of neurotransmission, its presynaptic AP waveform has never been directly studied, and thus the AP waveform shape and propagation through this long presynaptic nerve terminal are unknown. Using a fast voltage-sensitive dye, we have imaged the AP waveform from the presynaptic terminal of male and female frog NMJs and shown that the AP is very brief in duration and actively propagated along the entire length of the terminal. Furthermore, based on measured AP waveforms at different regions along the length of the nerve terminal, we show that the terminal is divided into three distinct electrical regions: A beginning region immediately after the last node of Ranvier where the AP is broadest, a middle region with a relatively consistent AP duration, and an end region near the tip of nerve terminal branches where the AP is briefer. We hypothesize that these measured changes in the AP waveform along the length of the motor nerve terminal may explain the proximal-distal gradient in transmitter release previously reported at the frog NMJ.SIGNIFICANCE STATEMENT The AP waveform plays an essential role in determining the behavior of neurotransmission at the presynaptic terminal. Although the frog NMJ is a model synapse for the study of synaptic transmission, there are many unknowns centered around the shape and propagation of its presynaptic AP waveform. Here, we demonstrate that the presynaptic terminal of the frog NMJ has a very brief AP waveform and that the motor nerve terminal contains three distinct electrical regions. We propose that the changes in the AP waveform as it propagates along the terminal can explain the proximal-distal gradient in transmitter release seen in electrophysiological studies.


Subject(s)
Action Potentials/physiology , Neuromuscular Junction/metabolism , Neurotransmitter Agents/metabolism , Action Potentials/drug effects , Animals , Female , Forecasting , Male , Neuromuscular Junction/drug effects , Organ Culture Techniques , Rana pipiens , Sodium Channel Blockers/pharmacology , Time Factors
10.
Curr Opin Physiol ; 4: 15-24, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30272045

ABSTRACT

Calcium-triggered neurotransmission underlies most communication in the nervous system. Yet, despite the conserved and essential nature of this process, the molecular underpinnings of calcium-triggered neurotransmission have been difficult to study directly and our understanding to this date remains incomplete. Here we frame more recent efforts to understand this process with a historical perspective of the study of neurotransmitter release at the neuromuscular junction. We focus on the role of calcium channel distribution and organization relative to synaptic vesicles, as well as the nature of the calcium sensors that trigger release. Importantly, we provide a framework for understanding how the function of neurotransmitter release sites, or active zones, contributes to the function of the synapse as a whole.

11.
Synapse ; 72(11): e22057, 2018 11.
Article in English | MEDLINE | ID: mdl-29956366

ABSTRACT

The impact of presynaptic transmitter release site organization on synaptic function has been a vibrant area of research for synaptic physiologists. Because there is a highly nonlinear relationship between presynaptic calcium influx and subsequent neurotransmitter release at synapses, the organization and density of calcium sources (voltage-gated calcium channels [VGCCs]) relative to calcium sensors located on synaptic vesicles is predicted to play a major role in shaping the dynamics of neurotransmitter release at a synapse. Here we review the history of structure-function studies within transmitter release sites at the neuromuscular junction across three model preparations in an effort to discern the relationship between VGCC organization and synaptic function, and whether that organizational structure imparts evolutionary advantages for each species.


Subject(s)
Neuromuscular Junction/metabolism , Animals , Calcium Channels/metabolism , Humans , Neuronal Plasticity , Neurotransmitter Agents/metabolism , Structure-Activity Relationship
12.
J Neurophysiol ; 119(4): 1340-1355, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29357458

ABSTRACT

We have investigated the impact of transmitter release site (active zone; AZ) structure on synaptic function by physically rearranging the individual AZ elements in a previously published frog neuromuscular junction (NMJ) AZ model into the organization observed in a mouse NMJ AZ. We have used this strategy, purposefully without changing the properties of AZ elements between frog and mouse models (even though there are undoubtedly differences between frog and mouse AZ elements in vivo), to directly test how structure influences function at the level of an AZ. Despite a similarly ordered ion channel array substructure within both frog and mouse AZs, frog AZs are much longer and position docked vesicles in a different location relative to AZ ion channels. Physiologically, frog AZs have a lower probability of transmitter release compared with mouse AZs, and frog NMJs facilitate strongly during short stimulus trains in contrast with mouse NMJs that depress slightly. Using our computer modeling approach, we found that a simple rearrangement of the AZ building blocks of the frog model into a mouse AZ organization could recapitulate the physiological differences between these two synapses. These results highlight the importance of simple AZ protein organization to synaptic function. NEW & NOTEWORTHY A simple rearrangement of the basic building blocks in the frog neuromuscular junction model into a mouse transmitter release site configuration predicted the major physiological differences between these two synapses, suggesting that transmitter release site structure and organization is a strong predictor of function.


Subject(s)
Ion Channels , Models, Neurological , Neuromuscular Junction/physiology , Synaptic Transmission/physiology , Synaptic Vesicles , Animals , Female , Male , Mice , Rana pipiens
13.
Ann N Y Acad Sci ; 1412(1): 73-81, 2018 01.
Article in English | MEDLINE | ID: mdl-29125190

ABSTRACT

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disorder caused by antibodies directed against the voltage-gated calcium channels that provide the calcium ion flux that triggers acetylcholine release at the neuromuscular junction. To study the pathophysiology of LEMS and test candidate therapeutic strategies, a passive-transfer animal model has been developed in mice, which can be created by daily intraperitoneal injections of LEMS patient serum or IgG into mice for 2-4 weeks. Results from studies of the mouse neuromuscular junction have revealed that each synapse has hundreds of transmitter release sites but that the probability for release at each one is likely to be low. LEMS further reduces this low probability such that transmission is no longer effective at triggering a muscle contraction. The LEMS-mediated attack reduces the number of presynaptic calcium channels, disorganizes transmitter release sites, and results in the homeostatic upregulation of other calcium channel types. Symptomatic treatment is focused on increasing the probability of release from dysfunctional release sites. Current treatment uses the potassium channel blocker 3,4-diaminopyridine (DAP) to broaden the presynaptic action potential, providing more time for calcium channels to open. Current research is focused on testing new calcium channel gating modifiers that work synergistically with DAP.


Subject(s)
Lambert-Eaton Myasthenic Syndrome/etiology , Animals , Autoantigens , Carcinoma, Small Cell/etiology , Disease Models, Animal , Humans , Immunization, Passive , Lambert-Eaton Myasthenic Syndrome/pathology , Lambert-Eaton Myasthenic Syndrome/therapy , Lung Neoplasms/etiology , Mice , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Neurotransmitter Agents/physiology
14.
J Neurophysiol ; 119(2): 688-699, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29167324

ABSTRACT

The spatiotemporal calcium dynamics within presynaptic neurotransmitter release sites (active zones, AZs) at the time of synaptic vesicle fusion is critical for shaping the dynamics of neurotransmitter release. Specifically, the relative arrangement and density of voltage-gated calcium channels (VGCCs) as well as the concentration of calcium buffering proteins can play a large role in the timing, magnitude, and plasticity of release by shaping the AZ calcium profile. However, a high-resolution understanding of the role of AZ structure in spatiotemporal calcium dynamics and how it may contribute to functional heterogeneity at an adult synapse is currently lacking. We demonstrate that synaptic delay varies considerably across, but not within, individual synapses at the frog neuromuscular junction (NMJ). To determine how elements of the AZ could contribute to this variability, we performed a parameter search using a spatially realistic diffusion reaction-based computational model of a frog NMJ AZ (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751-2763, 2013; Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M. J Neurophysiol 113: 71-87, 2015). We demonstrate with our model that synaptic delay is sensitive to significant alterations in the spatiotemporal calcium dynamics within an AZ at the time of release caused by manipulations of the density and organization of VGCCs or by the concentration of calcium buffering proteins. Furthermore, our data provide a framework for understanding how AZ organization and structure are important for understanding presynaptic function and plasticity. NEW & NOTEWORTHY The structure of presynaptic active zones (AZs) can play a large role in determining the dynamics of neurotransmitter release across many model preparations by influencing the spatiotemporal calcium dynamics within the AZ at the time of vesicle fusion. However, less is known about how different AZ structural schemes may influence the timing of neurotransmitter release. We demonstrate that variations in AZ structure create different spatiotemporal calcium profiles that, in turn, lead to differences in synaptic delay.


Subject(s)
Calcium Signaling , Neuromuscular Junction/metabolism , Animals , Calcium Channels/metabolism , Female , Male , Neuromuscular Junction/physiology , Ranidae , Reaction Time , Synaptic Transmission , Synaptic Vesicles/metabolism
15.
Neuropharmacology ; 131: 176-189, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29246857

ABSTRACT

Voltage-gated calcium channels (VGCCs) are critical regulators of many cellular functions, including the activity-dependent release of chemical neurotransmitter from nerve terminals. At nerve terminals, the Cav2 family of VGCCs are closely positioned with neurotransmitter-containing synaptic vesicles. The relationship between calcium ions and transmitter release is such that even subtle changes in calcium flux through VGCCs have a strong influence on the magnitude of transmitter released. Therefore, modulators of the calcium influx at nerve terminals have the potential to strongly affect transmitter release at synapses. We have previously developed novel Cav2-selective VGCC gating modifiers (notably GV-58) that slow the deactivation of VGCC current, increasing total calcium ion flux. Here, we describe ten new gating modifiers based on the GV-58 structure that extend our understanding of the structure-activity relationship for this class of molecules and extend the range of modulation of channel activities. In particular, we show that one of these new compounds (MF-06) was more efficacious than GV-58, another (KK-75) acts more quickly on VGCCs than GV-58, and a third (KK-20) has a mix of increased speed and efficacy. A subset of these new VGCC agonist gating modifiers can increase transmitter release during action potentials at neuromuscular synapses, and as such, show potential as therapeutics for diseases with a presynaptic deficit that results in neuromuscular weakness. Further, several of these new compounds can be useful tool compounds for the study of VGCC gating and function.


Subject(s)
Calcium Channel Agonists/pharmacology , Calcium Channels, N-Type/metabolism , Ion Channel Gating/physiology , Membrane Potentials/drug effects , Synaptic Transmission/drug effects , Animals , Biophysics , Calcium Channel Agonists/chemistry , Calcium Channels, N-Type/genetics , Cell Line , Dose-Response Relationship, Drug , Electric Stimulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Ion Channel Gating/drug effects , Membrane Potentials/genetics , Neuroblastoma/pathology , Neurotransmitter Agents/metabolism , Patch-Clamp Techniques , Purines/chemistry , Purines/pharmacology , Synaptic Transmission/genetics , Thiophenes/chemistry , Thiophenes/pharmacology , Time Factors , Transfection
17.
J Neurophysiol ; 113(7): 2480-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25652927

ABSTRACT

The quantitative relationship between presynaptic calcium influx and transmitter release critically depends on the spatial coupling of presynaptic calcium channels to synaptic vesicles. When there is a close association between calcium channels and synaptic vesicles, the flux through a single open calcium channel may be sufficient to trigger transmitter release. With increasing spatial distance, however, a larger number of open calcium channels might be required to contribute sufficient calcium ions to trigger vesicle fusion. Here we used a combination of pharmacological calcium channel block, high-resolution calcium imaging, postsynaptic recording, and 3D Monte Carlo reaction-diffusion simulations in the adult frog neuromuscular junction, to show that release of individual synaptic vesicles is predominately triggered by calcium ions entering the nerve terminal through the nearest open calcium channel. Furthermore, calcium ion flux through this channel has a low probability of triggering synaptic vesicle fusion (∼6%), even when multiple channels open in a single active zone. These mechanisms work to control the rare triggering of vesicle fusion in the frog neuromuscular junction from each of the tens of thousands of individual release sites at this large model synapse.


Subject(s)
Calcium Signaling , Neuromuscular Junction/physiology , Synaptic Transmission , Animals , Calcium Channels/physiology , Monte Carlo Method , Presynaptic Terminals/physiology , Rana pipiens , Synaptic Vesicles/physiology
18.
J Neurophysiol ; 113(1): 71-87, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25210157

ABSTRACT

Short-term synaptic facilitation occurs during high-frequency stimulation, is known to be dependent on presynaptic calcium ions, and persists for tens of milliseconds after a presynaptic action potential. We have used the frog neuromuscular junction as a model synapse for both experimental and computer simulation studies aimed at testing various mechanistic hypotheses proposed to underlie short-term synaptic facilitation. Building off our recently reported excess-calcium-binding-site model of synaptic vesicle release at the frog neuromuscular junction (Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD. Biophys J 104: 2751-2763, 2013), we have investigated several mechanisms of short-term facilitation at the frog neuromuscular junction. Our studies place constraints on previously proposed facilitation mechanisms and conclude that the presence of a second class of calcium sensor proteins distinct from synaptotagmin can explain known properties of facilitation observed at the frog neuromuscular junction. We were further able to identify a novel facilitation mechanism, which relied on the persistent binding of calcium-bound synaptotagmin molecules to lipids of the presynaptic membrane. In a real physiological context, both mechanisms identified in our study (and perhaps others) may act simultaneously to cause the experimentally observed facilitation. In summary, using a combination of computer simulations and physiological recordings, we have developed a stochastic computer model of synaptic transmission at the frog neuromuscular junction, which sheds light on the facilitation mechanisms in this model synapse.


Subject(s)
Neuromuscular Junction/physiology , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Animals , Calcium/metabolism , Calcium Channels, N-Type/metabolism , Calcium-Binding Proteins/metabolism , Computer Simulation , Kinetics , Membrane Lipids/metabolism , Microelectrodes , Models, Neurological , Presynaptic Terminals/physiology , Rana pipiens , Stochastic Processes , Synaptic Vesicles/physiology , Tissue Culture Techniques
19.
Mol Neurobiol ; 52(1): 456-63, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25195700

ABSTRACT

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that disrupts the normally reliable neurotransmission at the neuromuscular junction (NMJ). This disruption is thought to result from an autoantibody-mediated removal of a subset of the P/Q-type Ca(2+) channels involved with neurotransmitter release. With less neurotransmitter release at the NMJ, LEMS patients experience debilitating muscle weakness. The underlying cause of LEMS in slightly more than half of all patients is small cell lung cancer, and cancer therapy is the priority for these patients. In the remaining cases, the cause of LEMS is unknown, and these patients often rely on symptomatic treatment options, as there is no cure. However, current symptomatic treatment options, such as 3,4-diaminopyridine (3,4-DAP), can have significant dose-limiting side effects; thus, additional treatment approaches would benefit LEMS patients. Recent studies introduced a novel Ca(2+) channel agonist (GV-58) as a potential therapeutic alternative for LEMS. Additionally, this work has shown that GV-58 and 3,4-DAP interact in a supra-additive manner to completely restore the magnitude of neurotransmitter release at the NMJs of a LEMS mouse model. In this review, we discuss synaptic mechanisms for reliability at the NMJ and how these mechanisms are disrupted in LEMS. We then discuss the current treatment options for LEMS patients, while also considering recent work demonstrating the therapeutic potential of GV-58 alone and in combination with 3,4-DAP.


Subject(s)
Lambert-Eaton Myasthenic Syndrome/physiopathology , Lambert-Eaton Myasthenic Syndrome/therapy , Synapses/pathology , Animals , Humans , Lambert-Eaton Myasthenic Syndrome/drug therapy , Neuromuscular Junction/drug effects , Neuromuscular Junction/physiopathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Synapses/drug effects
20.
Prog Neurobiol ; 121: 55-90, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25042638

ABSTRACT

Investigations over the last two decades have made major inroads in clarifying the cellular and molecular events that underlie the fast, synchronous release of neurotransmitter at nerve endings. Thus, appreciable progress has been made in establishing the structural features and biophysical properties of the calcium (Ca2+) channels that mediate the entry into nerve endings of the Ca2+ ions that trigger neurotransmitter release. It is now clear that presynaptic Ca2+ channels are regulated at many levels and the interplay of these regulatory mechanisms is just beginning to be understood. At the same time, many lines of research have converged on the conclusion that members of the synaptotagmin family serve as the primary Ca2+ sensors for the action potential-dependent release of neurotransmitter. This identification of synaptotagmins as the proteins which bind Ca2+ and initiate the exocytotic fusion of synaptic vesicles with the plasma membrane has spurred widespread efforts to reveal molecular details of synaptotagmin's action. Currently, most models propose that synaptotagmin interfaces directly or indirectly with SNARE (soluble, N-ethylmaleimide sensitive factor attachment receptors) proteins to trigger membrane fusion. However, in spite of intensive efforts, the field has not achieved consensus on the mechanism by which synaptotagmins act. Concurrently, the precise sequence of steps underlying SNARE-dependent membrane fusion remains controversial. This review considers the pros and cons of the different models of SNARE-mediated membrane fusion and concludes by discussing a novel proposal in which synaptotagmins might directly elicit membrane fusion without the intervention of SNARE proteins in this final fusion step.


Subject(s)
Calcium/metabolism , Exocytosis/physiology , Models, Neurological , Presynaptic Terminals/physiology , SNARE Proteins/metabolism , Animals , Humans , Membrane Fusion/physiology , Neurotransmitter Agents/metabolism , Synaptotagmins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...