Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 27(8): 743-751, 2020 08.
Article in English | MEDLINE | ID: mdl-32661420

ABSTRACT

Complexes containing a pair of structural maintenance of chromosomes (SMC) family proteins are fundamental for the three-dimensional (3D) organization of genomes in all domains of life. The eukaryotic SMC complexes cohesin and condensin are thought to fold interphase and mitotic chromosomes, respectively, into large loop domains, although the underlying molecular mechanisms have remained unknown. We used cryo-EM to investigate the nucleotide-driven reaction cycle of condensin from the budding yeast Saccharomyces cerevisiae. Our structures of the five-subunit condensin holo complex at different functional stages suggest that ATP binding induces the transition of the SMC coiled coils from a folded-rod conformation into a more open architecture. ATP binding simultaneously triggers the exchange of the two HEAT-repeat subunits bound to the SMC ATPase head domains. We propose that these steps result in the interconversion of DNA-binding sites in the catalytic core of condensin, forming the basis of the DNA translocation and loop-extrusion activities.


Subject(s)
Carrier Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Nuclear Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/ultrastructure , Adenosine Triphosphate/metabolism , Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , Cell Cycle Proteins , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/ultrastructure , Cryoelectron Microscopy , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Nuclear Proteins/metabolism , Nuclear Proteins/ultrastructure , Protein Conformation , Protein Folding , Protein Multimerization , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
2.
Mol Cell ; 74(6): 1175-1188.e9, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31226277

ABSTRACT

The condensin protein complex plays a key role in the structural organization of genomes. How the ATPase activity of its SMC subunits drives large-scale changes in chromosome topology has remained unknown. Here we reconstruct, at near-atomic resolution, the sequence of events that take place during the condensin ATPase cycle. We show that ATP binding induces a conformational switch in the Smc4 head domain that releases its hitherto undescribed interaction with the Ycs4 HEAT-repeat subunit and promotes its engagement with the Smc2 head into an asymmetric heterodimer. SMC head dimerization subsequently enables nucleotide binding at the second active site and disengages the Brn1 kleisin subunit from the Smc2 coiled coil to open the condensin ring. These large-scale transitions in the condensin architecture lay out a mechanistic path for its ability to extrude DNA helices into large loop structures.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Carrier Proteins/chemistry , Chaetomium/genetics , Chromosomal Proteins, Non-Histone/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , Multiprotein Complexes/chemistry , Nuclear Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Proteins , Chaetomium/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Chromosomes/ultrastructure , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression , HeLa Cells , Humans , Models, Molecular , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
3.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28988770

ABSTRACT

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromosomes/metabolism , DNA-Binding Proteins/metabolism , Eukaryota/metabolism , Fungal Proteins/metabolism , Multiprotein Complexes/metabolism , Adenosine Triphosphatases/chemistry , Amino Acid Sequence , Chaetomium/metabolism , Chromosomes/chemistry , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , DNA-Binding Proteins/chemistry , Eukaryota/chemistry , Fungal Proteins/chemistry , HeLa Cells , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Saccharomyces cerevisiae/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...