Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 103(12): 125701, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19792445

ABSTRACT

The behavior of CdSe nanocrystals shocked to stresses of 2-3.75 GPa has been studied. Above 3 GPa a near-complete disappearance of the first excitonic feature and broadening of the low-energy absorption edge were observed, consistent with a wurtzite to rocksalt structural transformation. The transformation pressure is reduced relative to hydrostatic compression in a diamond anvil cell, and the rate increases, attributed to shock induced shear stress along the reaction coordinate. The especially rapid rate observed for a 3.75 GPa shock suggests multiple nucleation events per particle.

2.
J Am Chem Soc ; 131(14): 5285-93, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19351206

ABSTRACT

The partial transformation of ionic nanocrystals through cation exchange has been used to synthesize nanocrystal heterostructures. We demonstrate that the selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. In the case of copper(I) (Cu(+)) cation exchange in cadmium sulfide (CdS) nanorods, the reaction starts preferentially at the ends of the nanorods such that copper sulfide (Cu(2)S) grows inward from either end. The resulting morphology is very different from the striped pattern obtained in our previous studies of silver(I) (Ag(+)) exchange in CdS nanorods where nonselective nucleation of silver sulfide (Ag(2)S) occurs (Robinson, R. D.; Sadtler, B.; Demchenko, D. O.; Erdonmez, C. K.; Wang, L.-W.; Alivisatos, A. P. Science 2007, 317, 355-358). From interface formation energies calculated for several models of epitaxial connections between CdS and Cu(2)S or Ag(2)S, we infer the relative stability of each interface during the nucleation and growth of Cu(2)S or Ag(2)S within the CdS nanorods. The epitaxial attachments of Cu(2)S to the end facets of CdS nanorods minimize the formation energy, making these interfaces stable throughout the exchange reaction. Additionally, as the two end facets of wurtzite CdS nanorods are crystallographically nonequivalent, asymmetric heterostructures can be produced.

SELECTION OF CITATIONS
SEARCH DETAIL
...