Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PeerJ ; 11: e14775, 2023.
Article in English | MEDLINE | ID: mdl-36778141

ABSTRACT

This study aims to elucidate whether sulfur can inhibit citrus pollination by affecting pollen grains. For this, four sulfur-based products (inorganic sulfur, water dispersible granular sulfur, ammonium sulfate, copper sulfate) were tested to evaluate their effect on pollen germination and pollen tube growth of two citrus varieties: Clemenules mandarin (Citrus clementina) and Nova tangelo (Citrus clementina x [Citrus paradisi x Citrus reticulata]). Pollen grains were extracted from the flowers of these two varieties and subsequently placed in Petri dishes with modified BK (boron and potassium) germination medium with six concentrations of the sulfur-based products (0.2, 2, 20, 200, 2,000, 20,000 mg l-1). All the dishes were incubated and the pollen germination rate was calculated. All the sulfur products showed progressive pollen germination inhibition with a rising sulfur concentration. CTC50 (50% cytotoxicity inhibition) was around 20 mg l-1, with significant differences among treatments. Total pollen germination inhibition took place at 20,000 mg l-1. These results demonstrate that sulfur application can affect citrus pollination.


Subject(s)
Citrus , Pollination , Fruit , Pollen , Sulfur
2.
PLoS One ; 17(12): e0278934, 2022.
Article in English | MEDLINE | ID: mdl-36490267

ABSTRACT

Nadorcott is a well-established and appreciated mandarin by the fresh market. However, it produces seeds due to cross-pollination with other compatible varieties, which is quite frequent in most producing countries. Consumers prefer seedless mandarins and, therefore, citrus growers need techniques to avoid seeds forming. This study aims to evaluate the effect of six treatments (ammonium nitrate, potassium nitrate, sulfur, saccharose, methylcellulose, callose) on seed number per fruit when applied to Nadorcott trees. In this way, we evaluate which of them is more efficient and can be used in the future as an agronomic treatment to avoid seeds in mandarins. The effect of treatments on yield and fruit quality is also reported. To fulfill this main objective, a randomized complete block design experiment with three applications at flowering was performed on trees. Of the six tested treatments, only elemental sulfur was able to significantly reduce seed number by 87% compared to the positive control. This is a very novel result because it is the first time that such an effective treatment has been found. The biggest seed number per fruit was obtained for the saccharose treatment. Treatments did not significantly influence yield or fruit quality. These results are entirely consistent with a previous study that evaluated the effect of the same products on pollen tube growth, and they can help to develop new techniques. Nevertheless, more studies are necessary to test, for example, different treatment doses.


Subject(s)
Citrus , Fruit , Seeds , Pollination , Trees , Sulfur
3.
Plants (Basel) ; 11(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893623

ABSTRACT

Hybridization and polyploidy are major drivers of plant evolution. In Centaurea (Asteraceae), both mechanisms are frequent and lead to reticulate evolutions. However, in the Western Mediterranean section, Seridia studies are scarce. In this section, Centaurea aspera forms a complex including four European diploid and one Moroccan autotetraploid subspecies, an allopolyploid, and hybrids among them. Here, we aimed to delimit the different taxa, identify any introgressions, and discuss their evolutionary history. Samples of all taxa were analysed using 1688 SNPs obtained through GBS and were morphologically characterized. Three genetically well-differentiated clusters were observed, corresponding to the allopolyploid C. seridis, the diploid C. aspera and the cryptic autotetraploid C. aspera ssp. gentilii, which is proposed to be considered as a species. Centaurea seridis showed a high isolation by distance, a greater morphological variability, and a lack of interspecific gene flow. Diploid and autotetraploid C. aspera individuals were morphologically similar, and some introgressions were detected in Southern Spain, where new forms may promote diversification. This gene flow might have taken place during the Messinian and before autopolyploidization occurred in Morocco. In the C. aspera complex, current interspecific barriers are strong, while polyploidization may provide a better adaptation to drier environments.

4.
Sci Rep ; 12(1): 932, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042932

ABSTRACT

Subspecies are widely included as conservation units because of their potential to become new species. However, their practical recognition includes variable criteria, such as morphological, genetic, geographic and other differences. Centaurea aspera ssp. scorpiurifolia is a threatened taxon endemic to Andalusia (Spain), which coexists in most of its distribution area with similar taxa. Because of the difficulty to identify it using morphology alone, we aimed to sample all the populations cited as ssp. scorpiurifolia as exhaustively as possible, morphologically characterise them, and analyse their genetic structuring using microsatellites, to better understand difficulties when conserving subspecies. Three different Centaurea species were found which were easily identified. Within C. aspera, two genetic populations and some admixed individuals were observed, one including ssp. scorpiurifolia individuals and the other including individuals identified as subspecies aspera, stenophylla, and scorpiurifolia. A morphological continuum between these two genetic populations and a wide overlapping of their biogeographic distribution were also found. This continuum can affect the conservation of ssp. scorpiurifolia because of potential misidentifications and harmful effects of subspecific hybridization. Misidentifications could be partly overcome by using as many different traits as possible, and conservation priority should be given to populations representative of the ends of this continuum.


Subject(s)
Centaurea/genetics , Centaurea/metabolism , Conservation of Natural Resources/methods , DNA, Plant/genetics , Genetics, Population/methods , Hybridization, Genetic/genetics , Microsatellite Repeats/genetics , Phenotype , Spain
5.
Plants (Basel) ; 9(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899362

ABSTRACT

How polyploids become established is a long-debated question, especially for autopolyploids that seem to have no evolutionary advantage over their progenitors. The Centaurea aspera polyploid complex includes diploid C. aspera and two related tetraploids C. seridis and C. gentilii. Our purpose was to study the mating system among these three taxa and to analyze its influence on polyploid establishment. The distribution and ploidy level of the Moroccan populations, and forced intra- and inter-specific crosses were assessed. Allotetraploid C. seridis produced more cypselae per capitulum in the intra-specific crosses. It is a bigger plant and autogamous, and previous studies indicated that selfing forces the asymmetric formation of sterile hybrids. All these characteristics help C. seridis to avoid the minority-cytotype-exclusion effect and become established. Inter-specific hybridization was possible between C. aspera and C. gentilii, and with the symmetric formation of hybrids. However, 49% of the hybrid cypselae were empty, which probably reveals postzygotic barriers. Autotetraploid C. gentilii produced the same number of cypselae per capitulum as those of the diploid parental, has an indistinguishable field phenotype, is allogamous, and symmetrically produces hybrids. Therefore, C. gentilii does not seem to have the same competitive advantages as those of C. seridis.

6.
PeerJ ; 7: e8195, 2019.
Article in English | MEDLINE | ID: mdl-31844584

ABSTRACT

Between February 2018 and April 2018, flowers were collected from eight Rosaceae species. Flowers were kept in a freezer at -20 °C for three freezing times (Treatment 1, two months; Treatment 2, four months; Treatment 3, six months). After extracting pollen, in vitro germination was induced in a culture medium and incubated at six different temperatures for 72 h. The percentage of pollen germination, average pollen tube length and maximum pollen tube length were measured. Pollen germination was maximum for all species between 15 °C and 30 °C. Cydonia oblonga, Malus sylvestris, Prunus avium, Prunus domestica, Prunus dulcis, Prunus persica and Pyrus communis obtained 30-52% pollen germination between 15 °C and 20 °C. Prunus cerasifera had 40% pollen germination at 30 °C. All species studied reached the maximum pollen tube length between 10 °C and 25 °C. Germination did not change significantly for any of the species with freezing time, but we found significant differences in the three parameters measured between treatments. The highest germination percentages were obtained in Treatment 2 (four months frozen at -20 °C), while the maximum pollen tube length was reached in Treatment 1 (two months frozen at -20 °C). According to our results, freezing time affected the germination-temperature patterns. This could indicate that studies on the effect of temperature on pollen germination should always be carried out with fresh pollen to obtain more conclusive data.

7.
PLoS One ; 14(9): e0223147, 2019.
Article in English | MEDLINE | ID: mdl-31557246

ABSTRACT

BACKGROUND: In Citrus spp., gibberellic acid (GA) has been proposed to improve different processes related to crop cycle and yield. Accordingly, many studies have been published about how GA affects flowering and fruiting. Nevertheless, some such evidence is contradictory and the use of GA applications by farmers are still confusing and lack the expected results. PURPOSE: This review aims to collate, present, analyze and synthesize the most relevant empirical evidence to answer the following questions: (i) how does gibberellic acid act on flowering and fruiting of citrus trees?; (ii) why is all this knowledge sometimes not correctly used by farmers to solve yield problems relating to flowering and fruit set? METHODS: An extensive literature search to obtain a large number of records about the topic was done. Searches were done in five databases: WoS, Scopus, Google Academics, PubMed and Scielo. The search string used was "Gibberellic acid" AND "Citrus". Records were classified into 11 groups according to the development process they referred to and initial data extraction was done. Records related with flowering and fruit set were drawn, and full texts were screened. Fifty-eight full text records were selected for the final data extraction. RESULTS: Selected studies were published from 1959 to 2017 and were published mainly in Spain, USA, Brazil and Japan. Twelve species were studied, and Citrus sinensis, C. reticulata and C. unshiu were the principal ones. Most publications with pre-flowering treatments agreed that GA decreases flowering, while only 3 out of 18 did not observe any effect. In most of these studies, the effect on fruit set and yield was not evaluated. Studies with treatments at full bloom or some weeks later mostly reported increased fruit set. However, these increases did not imply higher yields. The results on yield were highly erratic as we found increases, decreases, no effects or variable effects. CONCLUSIONS: Despite some limitations, the action of GA related to cell division and growth, stimulating the sink ability of the organ and discouraging its abscission, has been clearly established through reviewed studies. GA applications before flowering counteract the floral induction caused by stress reducing flowering. However, on adult trees under field conditions, reducing flowering by applying GA would be difficult because it would be necessary to previously estimate the natural floral induction of trees. During flowering and fruit set, many problems may arise that limit production. Only when the problem is lack of fruit set stimulus can GA applications improve yields. However, much evidence suggests that the main factor-limiting yield would be carbohydrate availability rather than GA levels. GA applications increased fruit set (often transiently), but this increase did not mean improved yields.


Subject(s)
Citrus/growth & development , Flowers/growth & development , Fruit/growth & development , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Citrus/metabolism
8.
J Vis Exp ; (145)2019 03 06.
Article in English | MEDLINE | ID: mdl-30907871

ABSTRACT

Phytotron has been widely used to assess the effect of numerous parameters on the development of many species. However, less information is available on how to achieve fast profuse flowering in young fruit trees with this plant growth chamber. This study aimed to outline the design and performance of a fast clear methodology to force flowering in young mandarin trees (cv. Nova and cv. Clemenules) and to analyze the influence of induction intensity on inflorescence type. The combination of a short water stress period with simulated spring conditions (day 13 h, 22 °C, night 11 h, 12 °C) in the phytotron allowed flowers to be obtained only after 68-72 days from the time the experiment began. Low-temperature requirements were adequately replaced with water stress. Floral response was proportional to water stress (measured as the number of fallen leaves): the greater the induction, the larger the quantity of flowers. Floral induction intensity also influenced inflorescence type and dates for flowering. Details on artificial lighting (lumens), photoperiod, temperatures, plant size and age, induction strategy and days for each stage are provided. Obtaining flowers from fruit trees at any time, and also several times a year, can have many advantages for researchers. With the methodology proposed herein, three, or even four, flowering periods can be forced each year, and researchers should be able to decide when, and they will know, the duration of the entire process. The methodology can be useful for: flower production and in vitro pollen germination assays; experiments with pests that affect early fruit development stages; studies on fruit physiological alterations. All this can help plant breeders to shorten times to obtain male and female gametes to perform forced-crosses.


Subject(s)
Citrus/physiology , Flowers/physiology , Photoperiod , Trees/physiology , Citrus/genetics , Citrus/growth & development , Cold Temperature , Flowers/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Inflorescence/physiology , Trees/genetics , Trees/growth & development
9.
PeerJ ; 6: e5209, 2018.
Article in English | MEDLINE | ID: mdl-30002989

ABSTRACT

Although polyploidy is considered a ubiquitous process in plants, the establishment of new polyploid species may be hindered by ecological competition with parental diploid taxa. In such cases, the adaptive processes that result in the ecological divergence of diploids and polyploids can lead to their co-existence. In contrast, non-adaptive processes can lead to the co-existence of diploids and polyploids or to differentiated distributions, particularly when the minority cytotype disadvantage effect comes into play. Although large-scale studies of cytotype distributions have been widely conducted, the segregation of sympatric cytotypes on fine scales has been poorly studied. We analysed the spatial distribution and ecological requirements of the tetraploid Centaurea seridis and the diploid Centaurea aspera in east Spain on a large scale, and also microspatially in contact zones where both species hybridise and give rise to sterile triploid hybrids. On the fine scale, the position of each Centaurea individual was recorded along with soil parameters, accompanying species cover and plant richness. On the east Spanish coast, a slight latitudinal gradient was found. Tetraploid C. seridis individuals were located northerly and diploid C. aspera individuals southerly. Tetraploids were found only in the habitats with strong anthropogenic disturbance. In disturbed locations with well-developed semi-fixed or fixed dunes, diploids and tetraploids could co-exist and hybridise. However, on a fine scale, although taxa were spatially segregated in contact zones, they were not ecologically differentiated. This finding suggests the existence of non-adaptive processes that have led to their co-existence. Triploid hybrids were closer to diploid allogamous mothers (C. aspera) than to tetraploid autogamous fathers (C. seridis). This may result in a better ability to compete for space in the tetraploid minor cytotype, which might facilitate its long-term persistence.

10.
PeerJ ; 6: e4729, 2018.
Article in English | MEDLINE | ID: mdl-29761049

ABSTRACT

Organic agriculture is becoming increasingly important, and many natural products are now available for organic farmers to manage and improve their crops. Several ethnobotanical studies have indicated that the use of nettle slurry as fertilizer in organic farming for horticultural crops is spreading. Sometimes, however, the consequences of using these natural products have been poorly evaluated, and there is very little scientific evidence for the effects of using these slurries. In this study, we aimed to analyze the possible effect of nettle slurry on potato yields produced by organic farming. To achieve this main objective, we assessed the effect of nettle slurry on potato yields, plant size and growth parameters, chlorophyll content, and the presence of pests and diseases. Different slurry doses were assessed in 36 plots and nine variables were measured during the crop cycle. Under these field experimental conditions, nettle slurry (including one treatment with Urtica in combination with Equisetum) had no significant effects on yield, chlorophyll content, or the presence of pests and diseases in organic potato crops. The highest chlorophyll content was found in the double dose treatment, but the difference was not significant. This result, together with a small improvement in plant height with the double dose treatment, might indicate very slight crop enhancement which, under our experimental conditions, was not enough to improve yield. The Urtica and Equisetum slurry chemical analyses showed very low levels of nitrogen, phosphorus, and potassium.

11.
PLoS One ; 10(10): e0140465, 2015.
Article in English | MEDLINE | ID: mdl-26469271

ABSTRACT

Hybridization between tetraploids and their related diploids is generally unsuccessful in Centaurea, hence natural formation of triploid hybrids is rare. In contrast, the diploid Centaurea aspera and the allotetraploid C. seridis coexist in several contact zones where a high frequency of triploid hybrids is found. We analyzed the floral biology of the three taxa to identify reproductive isolation mechanisms that allow their coexistence. Flowering phenology was recorded, and controlled pollinations within and between the three taxa were performed in the field. Ploidy level and germination of progeny were also assessed. There was a 50% flowering overlap which indicated a phenological shift. Diploids were strictly allogamous and did not display mentor effects, while tetraploids were found to be highly autogamous. This breakdown of self-incompatibility by polyploids is first described in Centaurea. The asymmetrical formation of the hybrid was also found: all the triploid intact cypselae came from the diploid mothers pollinated by the pollen of tetraploids. Pollen and eggs from triploids were totally sterile, acting as a strong triploid block. These prezygotic isolation mechanisms ensured higher assortative mating in tetraploids than in diploids, improving their persistence in the contact zones. However these mechanisms can also be the cause of the low genetic diversity and high genetic structure observed in C. seridis.


Subject(s)
Centaurea/genetics , Diploidy , Hybridization, Genetic , Pollination , Triploidy , Centaurea/physiology , Inbreeding , Plant Infertility , Reproductive Isolation
SELECTION OF CITATIONS
SEARCH DETAIL
...