Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 87(15): 7779-86, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26146800

ABSTRACT

Absolute Mα and Mß X-ray intensities were measured for the elements Pt, Au, Pb, U, and Th by electron impact for energies ranging from 6 to 38 keV. Experimental data were obtained by measuring the X-ray intensity emitted from bulk samples with an electron microprobe using high-resolution wavelength-dispersive spectrometers. Recorded X-ray intensities were converted into absolute X-ray yields by evaluation of the detector efficiency and then compared with X-ray intensities calculated by means of Monte Carlo simulations. Simulated Mα and Mß X-ray intensities were found to be in good agreement with the measurements, allowing their use in standardless quantification methods. A procedure and a software program were developed to accurately obtain virtual standard values. Standardless quantifications of Pb and U were tested on standards of PbS, PbTe, PbCl2, vanadinite, and UO2.

2.
Microsc Microanal ; 16(1): 21-32, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20030912

ABSTRACT

XFILM is a computer program for determining the thickness and composition of thin films on substrates and multilayers by electron probe microanalysis. In this study, we describe the X-ray emission model implemented in the latest version of XFILM and assess its reliability by comparing measured and calculated k-ratios from thin-film samples available in the literature. We present and discuss examples of applications of XFILM that illustrate the capabilities of the program.

3.
Microsc Microanal ; 10(6): 745-52, 2004 Dec.
Article in English | MEDLINE | ID: mdl-19780315

ABSTRACT

A signal loss is generally reported in electron probe microanalysis (EPMA) of porous, highly divided materials like heterogeneous catalysts. The hypothesis generally proposed to explain this signal loss refers to porosity, roughness, energy losses at interfaces, or charging effects. In this work we investigate by Monte Carlo simulation all these physical effects and compare the simulated results with measurements obtained on a mesoporous alumina. A program using the PENELOPE package and taking into account these four physical phenomena has been written. Simulation results show clearly that neither porosity nor roughness, nor specific energy losses at interfaces, nor charging effects are responsible for the observed signal loss. Measurements performed with analysis of carbon and oxygen lead to a correct total of concentration. The signal loss is thus explained by a composition effect due to a carbon contamination brought by the sample preparation and to a lesser extent by a stoichiometry of the porous alumina different from a massive alumina. For this kind of high specific surface porous sample, a little surface contamination layer becomes an important volume contamination that can produce large quantification errors if the contaminant is not analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...