Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(42): 47948-47956, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32975924

ABSTRACT

As nanofiltration applications increase in diversity, there is a need for new fabrication methods to prepare chemically and thermally stable membranes with high retention performance. In this work, thio-bromo "click" chemistry was adapted for the fabrication of a robust covalently attached and ultrathin nanofiltration membrane. The selective layer was formed on a pre-functionalized porous ceramic surface via a novel, liquid-vapor interfacial polymerization method. Compared to the most common conventional interfacial polymerization procedure, no harmful solvents and a minimal amount of reagents were used. The properties of the membrane selective layer and its free-standing equivalent were characterized by complementary physicochemical analysis. The stability of the thin selective layer was established in water, ethanol, non-polar solvents, and up to 150 °C. The potential as a nanofiltration membrane was confirmed through solvent permeability tests (water, ethanol, hexane, and toluene), PEG-in-water molecular weight cut-off measurements (≈700 g mol-1), and dye retention measurements.

2.
ChemSusChem ; 13(1): 136-140, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31562787

ABSTRACT

Microporous polymer frameworks have attracted considerable attention to make novel separation layers owing to their highly porous structure, high permeability, and excellent molecular separation. This study concerns the fabrication and properties of thin melamine-based microporous polymer networks with a layer thickness of around 400 nm, supported on an α-alumina support and their potential use in organic solvent nanofiltration. The modified membranes show excellent solvent purification performances, such as n-heptane permeability as high as 9.2 L m-2 h-1 bar -1 in combination with a very high rejection of approximately 99 % for organic dyes with molecular weight of ≥457 Da. These values are higher than for the majority of the state-of-the-art membranes. The membranes further exhibit outstanding long-term operation stability. This work significantly expands the possibilities of using ceramic membranes in organic solvent nanofiltration.

3.
Chem Commun (Camb) ; 55(28): 4119-4122, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30889233

ABSTRACT

To the best of our knowledge, for the first time MIL-53(Al) and NH2-MIL-53(Al) modified α-alumina membranes are investigated for the adsorption of organic dyes from organic solvents. These new, modified membranes show excellent adsorption of high concentrations of Rose Bengal dye in methanol and isopropanol solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...