Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Haematologica ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813718

ABSTRACT

Mucosal-associated invariant T (MAIT) cells are innate-like T-cells implicated in the response to fungal and bacterial infections. Their contribution to restoring T-cell immunity and influencing hematopoietic stem cell transplant (HSCT) outcomes remains poorly understood. We retrospectively studied MAIT-cell recovery in 145 consecutive children and young adults with hematological malignancies undergoing allo-HSCT, between April/2019 and May/2022, from unrelated matched donor (MUD, n=52), with standard graft-versus-host-disease (GvHD) prophylaxis, or HLA-haploidentical (Haplo, n=93) donor after in vitro αßT/CD19-cell depletion, without post-HSCT pharmacological prophylaxis. With a median follow-up of 33 months (12-49), overall survival (OS), disease-free survival (DFS) and non-relapse mortality (NRM) were 79.5%, 72% and 7%, respectively; GvHD-free, Relapse-free Survival (GRFS) was 63%, while cumulative incidence of relapse was 23%. While WWT-cells reconstituted 1-2 years post-HSCT, MAIT-cells showed delayed recovery and prolonged functional impairment, characterized by expression of activation (CD25, CD38), exhaustion (PD1, TIM3) and senescence (CD57) markers, and suboptimal ex vivo response. OS, DFS and NRM were not affected by MAIT-cells. Interestingly, higher MAIT-cells at day+30 correlated with higher incidence of grade II-IV acute GvHD (19% vs 7%, p=0.06). Furthermore, a greater MAIT-cell count tended to be associated with a higher incidence of chronic GvHD (17% vs 6%, p=0.07) resulting in lower GRFS (55% vs 73%, p=0.05). Higher MAIT-cells also correlated with greater cytomegalovirus (CMV) reactivation and lower late blood stream infections (BSI) (44% vs 24%, p=0.02 and 9% vs 18%, p=0.08, respectively). Future studies are needed to confirm the impact of early MAIT-cell recovery on cGvHD, CMV reactivation and late BSI.

2.
Nat Commun ; 15(1): 3662, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688902

ABSTRACT

Hematopoietic stem cell gene therapy (GT) using a γ-retroviral vector (γ-RV) is an effective treatment for Severe Combined Immunodeficiency due to Adenosine Deaminase deficiency. Here, we describe a case of GT-related T-cell acute lymphoblastic leukemia (T-ALL) that developed 4.7 years after treatment. The patient underwent chemotherapy and haploidentical transplantation and is currently in remission. Blast cells contain a single vector insertion activating the LIM-only protein 2 (LMO2) proto-oncogene, confirmed by physical interaction, and low Adenosine Deaminase (ADA) activity resulting from methylation of viral promoter. The insertion is detected years before T-ALL in multiple lineages, suggesting that further hits occurred in a thymic progenitor. Blast cells contain known and novel somatic mutations as well as germline mutations which may have contributed to transformation. Before T-ALL onset, the insertion profile is similar to those of other ADA-deficient patients. The limited incidence of vector-related adverse events in ADA-deficiency compared to other γ-RV GT trials could be explained by differences in transgenes, background disease and patient's specific factors.


Subject(s)
Adenosine Deaminase , Agammaglobulinemia , Genetic Therapy , Genetic Vectors , Hematopoietic Stem Cell Transplantation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Proto-Oncogene Mas , Severe Combined Immunodeficiency , Humans , Adenosine Deaminase/deficiency , Adenosine Deaminase/genetics , Genetic Therapy/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Severe Combined Immunodeficiency/therapy , Severe Combined Immunodeficiency/genetics , Genetic Vectors/genetics , Agammaglobulinemia/therapy , Agammaglobulinemia/genetics , Male , Retroviridae/genetics
3.
Transplant Cell Ther ; 30(6): 603.e1-603.e11, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38548227

ABSTRACT

Acute graft versus host disease (GVHD) is a common and serious complication of allogeneic hematopoietic cell transplantation (HCT) in children but overall clinical grade at onset only modestly predicts response to treatment and survival outcomes. Two tools to assess risk at initiation of treatment were recently developed. The Minnesota risk system stratifies children for risk of nonrelapse mortality (NRM) according to the pattern of GVHD target organ severity. The Mount Sinai Acute GVHD International Consortium (MAGIC) algorithm of 2 serum biomarkers (ST2 and REG3α) predicts NRM in adult patients but has not been validated in a pediatric population. We aimed to develop and validate a system that stratifies children at the onset of GVHD for risk of 6-month NRM. We determined the MAGIC algorithm probabilities (MAPs) and Minnesota risk for a multicenter cohort of 315 pediatric patients who developed GVHD requiring treatment with systemic corticosteroids. MAPs created 3 risk groups with distinct outcomes at the start of treatment and were more accurate than Minnesota risk stratification for prediction of NRM (area under the receiver operating curve (AUC), .79 versus .62, P = .001). A novel model that combined Minnesota risk and biomarker scores created from a training cohort was more accurate than either biomarkers or clinical systems in a validation cohort (AUC .87) and stratified patients into 2 groups with highly different 6-month NRM (5% versus 38%, P < .001). In summary, we validated the MAP as a prognostic biomarker in pediatric patients with GVHD, and a novel risk stratification that combines Minnesota risk and biomarker risk performed best. Biomarker-based risk stratification can be used in clinical trials to develop more tailored approaches for children who require treatment for GVHD.


Subject(s)
Biomarkers , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Pancreatitis-Associated Proteins , Humans , Graft vs Host Disease/blood , Graft vs Host Disease/diagnosis , Child , Biomarkers/blood , Female , Male , Hematopoietic Stem Cell Transplantation/adverse effects , Child, Preschool , Adolescent , Pancreatitis-Associated Proteins/blood , Acute Disease , Risk Assessment , Infant , Interleukin-1 Receptor-Like 1 Protein/blood , Algorithms , Transplantation, Homologous/adverse effects , Treatment Outcome
4.
Transplant Cell Ther ; 30(4): 421-432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320730

ABSTRACT

The overall response rate (ORR) 28 days after treatment has been adopted as the primary endpoint for clinical trials of acute graft versus host disease (GVHD). However, physicians often need to modify immunosuppression earlier than day (D) 28, and non-relapse mortality (NRM) does not always correlate with ORR at D28. We studied 1144 patients that received systemic treatment for GVHD in the Mount Sinai Acute GVHD International Consortium (MAGIC) and divided them into a training set (n=764) and a validation set (n=380). We used a recursive partitioning algorithm to create a Mount Sinai model that classifies patients into favorable or unfavorable groups that predicted 12 month NRM according to overall GVHD grade at both onset and D14. In the Mount Sinai model grade II GVHD at D14 was unfavorable for grade III/IV GVHD at onset and predicted NRM as well as the D28 standard response model. The MAGIC algorithm probability (MAP) is a validated score that combines the serum concentrations of suppression of tumorigenicity 2 (ST2) and regenerating islet-derived 3-alpha (REG3α) to predict NRM. Inclusion of the D14 MAP biomarker score with the D14 Mount Sinai model created three distinct groups (good, intermediate, poor) with strikingly different NRM (8%, 35%, 76% respectively). This D14 MAGIC model displayed better AUC, sensitivity, positive and negative predictive value, and net benefit in decision curve analysis compared to the D28 standard response model. We conclude that this D14 MAGIC model could be useful in therapeutic decisions and may offer an improved endpoint for clinical trials of acute GVHD treatment.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Biomarkers , Graft vs Host Disease/drug therapy , Immunosuppression Therapy , Transplantation, Homologous
5.
Blood Adv ; 8(8): 2047-2057, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38324721

ABSTRACT

ABSTRACT: The absence of a standardized definition for graft-versus-host disease (GVHD) flares and data on its clinical course are significant concerns. We retrospectively evaluated 968 patients across 23 Mount Sinai Acute GVHD International Consortium (MAGIC) transplant centers who achieved complete response (CR) or very good partial response (VGPR) within 4 weeks of treatment. The cumulative incidence of flares within 6 months was 22%, and flares were associated with a higher risk of nonrelapse mortality (NRM; adjusted hazard ratio [aHR], 4.84; 95% confidence interval [CI], 3.19-7.36; P < .001). Flares were more severe (grades 3/4, 41% vs 16%; P < .001) and had more frequent lower gastrointestinal (LGI) involvement (55% vs 32%; P < .001) than the initial GVHD. At CR/VGPR, elevated MAGIC biomarkers predicted the future occurrence of a flare, along with its severity and LGI involvement. In multivariate analyses, higher Ann Arbor (AA) biomarker scores at CR/VGPR were significant risk factors for flares (AA2 vs AA1: aHR, 1.81 [95% CI, 1.32-2.48; P = .001]; AA3 vs AA1: aHR, 3.14 [95% CI, 1.98-4.98; P < .001]), as were early response to initial treatment (aHR, 1.84; 95% CI, 1.21-2.80; P = .004) and HLA-mismatched unrelated donor (aHR, 1.74; 95% CI, 1.00-3.02; P = .049). MAGIC biomarkers also stratified the risk of NRM both at CR/VGPR and at the time of flare. We conclude that GVHD flares are common and carry a significant mortality risk. The occurrence of future flares can be predicted by serum biomarkers that may serve to guide adjustment and discontinuation of immunosuppression.


Subject(s)
Graft vs Host Disease , Graft vs Host Disease/etiology , Graft vs Host Disease/diagnosis , Humans , Male , Female , Middle Aged , Adult , Retrospective Studies , Acute Disease , Hematopoietic Stem Cell Transplantation/adverse effects , Adolescent , Aged , Biomarkers/blood , Young Adult , Risk Factors
6.
Blood ; 143(3): 279-289, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-37738655

ABSTRACT

ABSTRACT: TCRαß/CD19 cell depletion is a promising graft manipulation technique frequently used in the context of human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (HSCT). We previously reported the results of a phase I-II clinical trial (NCT01810120) to assess the safety and the efficacy of this type of exvivo T-cell depletion in 80 children with acute leukemia, showing promising survival outcomes. We now report an updated analysis on a cohort of 213 children with a longer follow-up (median, 47.6 months for surviving patients). With a 5-year cumulative incidence of nonrelapse mortality of 5.2% (95% confidence interval [CI], 2.8%-8.8%) and a cumulative incidence of relapse of 22.7% (95% CI, 16.9%-29.2%), projected 10-year overall and disease-free survival (DFS) were 75.4% (95% CI, 68.6%-80.9%) and 71.6% (95% CI, 64.4%-77.6%), respectively. Cumulative incidence of both grade II-IV acute and chronic graft-versus-host disease were low (14.7% and 8.1%, respectively). In a multivariable analysis for DFS including type of disease, use of total body irradiation in the conditioning regimen (hazard ratio [HR], 0.5; 95% CI, 0.26-0.98; P = .04), disease status at HSCT (complete remission [CR] ≥3 vs CR 1/2; HR, 2.23; 95% CI, 1.20-4.16; P = .01), and high levels of pre-HSCT minimal residual disease (HR, 2.09; 95% CI, 1.01-4.33; P = .04) were independently associated with outcome. In summary, besides confirming the good outcome results already reported (which are almost superimposable on those of transplant from HLA-matched donors), this clinical update allows the identification of patients at higher risk of treatment failure for whom personalized approaches, aimed at reducing the risk of relapse, are warranted.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Child , Humans , Receptors, Antigen, T-Cell, alpha-beta , Transplantation, Haploidentical/adverse effects , HLA Antigens , Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Antigens Class II , Recurrence , Transplantation Conditioning/methods , Retrospective Studies
7.
Blood ; 142(16): 1387-1398, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37856089

ABSTRACT

The correlation existing between gut microbiota diversity and survival after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has so far been studied in adults. Pediatric studies question whether this association applies to children as well. Stool samples from a multicenter cohort of 90 pediatric allo-HSCT recipients were analyzed using 16S ribosomal RNA amplicon sequencing to profile the gut microbiota and estimate diversity with the Shannon index. A global-to-local networking approach was used to characterize the ecological structure of the gut microbiota. Patients were stratified into higher- and lower-diversity groups at 2 time points: before transplantation and at neutrophil engraftment. The higher-diversity group before transplantation exhibited a higher probability of overall survival (88.9% ± 5.7% standard error [SE] vs 62.7% ± 8.2% SE; P = .011) and lower incidence of grade 2 to 4 and grade 3 to 4 acute graft-versus-host disease (aGVHD). No significant difference in relapse-free survival was observed between the 2 groups (80.0% ± 6.0% SE vs 55.4% ± 10.8% SE; P = .091). The higher-diversity group was characterized by higher relative abundances of potentially health-related microbial families, such as Ruminococcaceae and Oscillospiraceae. In contrast, the lower-diversity group showed an overabundance of Enterococcaceae and Enterobacteriaceae. Network analysis detected short-chain fatty acid producers, such as Blautia, Faecalibacterium, Roseburia, and Bacteroides, as keystones in the higher-diversity group. Enterococcus, Escherichia-Shigella, and Enterobacter were instead the keystones detected in the lower-diversity group. These results indicate that gut microbiota diversity and composition before transplantation correlate with survival and with the likelihood of developing aGVHD.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Adult , Humans , Child , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Homologous , Graft vs Host Disease/microbiology , Probability
8.
Nat Commun ; 14(1): 3423, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37296093

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy may achieve long-lasting remission in patients with B-cell malignancies not responding to conventional therapies. However, potentially severe and hard-to-manage side effects, including cytokine release syndrome (CRS), neurotoxicity and macrophage activation syndrome, and the lack of pathophysiological experimental models limit the applicability and development of this form of therapy. Here we present a comprehensive humanized mouse model, by which we show that IFNγ neutralization by the clinically approved monoclonal antibody, emapalumab, mitigates severe toxicity related to CAR-T cell therapy. We demonstrate that emapalumab reduces the pro-inflammatory environment in the model, thus allowing control of severe CRS and preventing brain damage, characterized by multifocal hemorrhages. Importantly, our in vitro and in vivo experiments show that IFNγ inhibition does not affect the ability of CD19-targeting CAR-T (CAR.CD19-T) cells to eradicate CD19+ lymphoma cells. Thus, our study provides evidence that anti-IFNγ treatment might reduce immune related adverse effect without compromising therapeutic success and provides rationale for an emapalumab-CAR.CD19-T cell combination therapy in humans.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Mice , Animals , Humans , Immunotherapy, Adoptive/adverse effects , B-Lymphocytes , Interferon-gamma , Neoplasms/etiology , Cytokine Release Syndrome , Antigens, CD19 , Cell- and Tissue-Based Therapy
9.
Blood Adv ; 7(16): 4479-4491, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37315175

ABSTRACT

Late acute graft-versus-host disease (GVHD) is defined as de novo acute GVHD presenting beyond 100 days after allogeneic hematopoietic cell transplantation (HCT) without manifestations of chronic GVHD. Data are limited regarding its characteristics, clinical course, and risk factors because of underrecognition and changes in classification. We evaluated 3542 consecutive adult recipients of first HCTs at 24 Mount Sinai Acute GVHD International Consortium (MAGIC) centers between January 2014 and August 2021 to better describe the clinical evolution and outcomes of late acute GVHD. The cumulative incidence of classic acute GVHD that required systemic treatment was 35.2%, and an additional 5.7% of patients required treatment for late acute GVHD. At the onset of symptoms, late acute GVHD was more severe than classic acute GVHD based on both clinical and MAGIC algorithm probability biomarker parameters and showed a lower overall response rate on day 28. Both clinical and biomarker grading at the time of treatment stratified the risk of nonrelapse mortality (NRM) in patients with classic and late acute GVHD, respectively, but long-term NRM and overall survival did not differ between patients with classic and late acute GVHD. Advanced age, female-to-male sex mismatch, and the use of reduced intensity conditioning were associated with the development of late acute GVHD, whereas the use of posttransplant cyclophosphamide-based GVHD prevention was protective mainly because of shifts in GVHD timing. Because overall outcomes were comparable, our findings, although not definitive, suggest that similar treatment strategies, including eligibility for clinical trials, based solely on clinical presentation at onset are appropriate.


Subject(s)
Graft vs Host Disease , Adult , Humans , Male , Female , Incidence , Graft vs Host Disease/diagnosis , Graft vs Host Disease/epidemiology , Graft vs Host Disease/etiology , Acute Disease , Biomarkers , Risk Factors
10.
Blood ; 142(2): 146-157, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37172203

ABSTRACT

Autologous CD19-directed chimeric antigen receptor (CAR)-T cells have shown unprecedented efficacy in children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, patients either relapsing after allogeneic hematopoietic stem cell transplantation (allo-HSCT) or displaying profound lymphopenia and/or rapidly progressing disease often cannot access autologous products. These hurdles may be overcome by allogeneic, donor-derived CAR-T cells. We tested donor-derived T cells transduced with a second-generation (4.1BB) CD19-directed CAR for treatment of patients with BCP-ALL in a hospital-exemption setting. Two constructs were tested: a retroviral construct incorporating the suicide gene inducible caspase-9 (CD19-CAR-Retro_ALLO) first and then a lentiviral construct and an automated, Prodigy-based manufacturing process (CD19-CAR-Lenti_ALLO). Thirteen children/young adults received ALLO-CAR-T cells between March 2021 and October 2022. Doses ranged between 1.0 × 106 and 3.0 × 106 CAR-T cells per kg. The toxicity profile was comparable with that of autologous CAR-T cells, characterized mainly by cytopenia, cytokine release syndrome (maximum grade 1), and grade 2 immune-effector cell-associated neurotoxicity syndrome. One case of acute graft-versus-host disease (GVHD) occurred and was rapidly controlled with steroids and ruxolitinib. None of the other patients, including 3 given ALLO-CAR-T cells from an HLA-haploidentical donor, experienced GVHD. Two patients received ALLO-CAR-T cells before HSCT and showed a significant expansion of CAR-T cells without any sign of GVHD. All patients obtained complete remission (CR) with absence of minimal residual disease in the bone marrow. With a median follow-up of 12 months (range, 5-21), 8 of 13 patients maintained CR. Allogeneic anti-CD19 CAR-T cells can effectively treat highly refractory BCP-ALL relapsing after allo-HSCT without showing increased toxicity as compared with autologous CAR-T cells.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Young Adult , Humans , Child , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes , Graft vs Host Disease/etiology , Immunotherapy, Adoptive/adverse effects , Antigens, CD19
12.
Am J Transplant ; 23(9): 1446-1450, 2023 09.
Article in English | MEDLINE | ID: mdl-37061187

ABSTRACT

Hematopoietic stem cell transplantation (HSCT)-based approaches are increasingly investigated strategies to induce tolerance in recipients of solid allografts. However, in the majority of cases, these approaches rely on the infusion of hematopoietic stem cells recovered from the same solid organ donor. In this report, we describe the case of a boy who received liver transplantation from a deceased donor, who had successfully underwent allogeneic HSCT from an unrelated donor for hepatitis-associated aplastic anemia. In this patient, it was possible to permanently withdraw post-HSCT immune suppression without causing any sign of liver graft dysfunction. To the best of our knowledge, this is the first case of operational tolerance documented in a patient who received combined liver transplantation and HSCT from different donors.


Subject(s)
Anemia, Aplastic , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Liver Transplantation , Male , Humans , Child , Liver Transplantation/adverse effects , Tissue Donors , Hematopoietic Stem Cell Transplantation/adverse effects , Immune Tolerance , Transplantation, Homologous/adverse effects , Anemia, Aplastic/etiology , Graft vs Host Disease/etiology
13.
N Engl J Med ; 388(14): 1284-1295, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37018492

ABSTRACT

BACKGROUND: Immunotherapy with chimeric antigen receptor (CAR)-expressing T cells that target the disialoganglioside GD2 expressed on tumor cells may be a therapeutic option for patients with high-risk neuroblastoma. METHODS: In an academic, phase 1-2 clinical trial, we enrolled patients (1 to 25 years of age) with relapsed or refractory, high-risk neuroblastoma in order to test autologous, third-generation GD2-CAR T cells expressing the inducible caspase 9 suicide gene (GD2-CART01). RESULTS: A total of 27 children with heavily pretreated neuroblastoma (12 with refractory disease, 14 with relapsed disease, and 1 with a complete response at the end of first-line therapy) were enrolled and received GD2-CART01. No failure to generate GD2-CART01 was observed. Three dose levels were tested (3-, 6-, and 10×106 CAR-positive T cells per kilogram of body weight) in the phase 1 portion of the trial, and no dose-limiting toxic effects were recorded; the recommended dose for the phase 2 portion of the trial was 10×106 CAR-positive T cells per kilogram. Cytokine release syndrome occurred in 20 of 27 patients (74%) and was mild in 19 of 20 (95%). In 1 patient, the suicide gene was activated, with rapid elimination of GD2-CART01. GD2-targeted CAR T cells expanded in vivo and were detectable in peripheral blood in 26 of 27 patients up to 30 months after infusion (median persistence, 3 months; range, 1 to 30). Seventeen children had a response to the treatment (overall response, 63%); 9 patients had a complete response, and 8 had a partial response. Among the patients who received the recommended dose, the 3-year overall survival and event-free survival were 60% and 36%, respectively. CONCLUSIONS: The use of GD2-CART01 was feasible and safe in treating high-risk neuroblastoma. Treatment-related toxic effects developed, and the activation of the suicide gene controlled side effects. GD2-CART01 may have a sustained antitumor effect. (Funded by the Italian Medicines Agency and others; ClinicalTrials.gov number, NCT03373097.).


Subject(s)
Immunotherapy, Adoptive , Neuroblastoma , Receptors, Chimeric Antigen , Child , Humans , Caspase 9/adverse effects , Caspase 9/genetics , Caspase 9/metabolism , Caspase 9/therapeutic use , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/therapy , Neuroblastoma/genetics , Neuroblastoma/therapy , Receptors, Chimeric Antigen/therapeutic use
14.
Front Immunol ; 14: 1142597, 2023.
Article in English | MEDLINE | ID: mdl-37025994

ABSTRACT

Childhood malignant brain tumors remain a significant cause of death in the pediatric population, despite the use of aggressive multimodal treatments. New therapeutic approaches are urgently needed for these patients in order to improve prognosis, while reducing side effects and long-term sequelae of the treatment. Immunotherapy is an attractive option and, in particular, the use of gene-modified T cells expressing a chimeric antigen receptor (CAR-T cells) represents a promising approach. Major hurdles in the clinical application of this approach in neuro-oncology, however, exist. The peculiar location of brain tumors leads to both a difficulty of access to the tumor mass, shielded by the blood-brain barrier (BBB), and to an increased risk of potentially life-threatening neurotoxicity, due to the primary location of the disease in the CNS and the low intracranial volume reserve. There are no unequivocal data on the best way of CAR-T cell administration. Multiple trials exploring the use of CD19 CAR-T cells for hematologic malignancies proved that genetically engineered T cells can cross the BBB, suggesting that systemically administered CAR-T cell can be used in the neuro-oncology setting. Intrathecal and intra-tumoral delivery can be easily managed with local implantable devices, suitable also for a more precise neuro-monitoring. The identification of specific approaches of neuro-monitoring is of utmost importance in these patients. In the present review, we highlight the most relevant potential challenges associated with the application of CAR-T cell therapy in pediatric brain cancers, focusing on the evaluation of the best route of delivery, the peculiar risk of neurotoxicity and the related neuro-monitoring.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive/adverse effects , Brain Neoplasms/pathology , T-Lymphocytes , Blood-Brain Barrier/metabolism
15.
Blood Adv ; 7(21): 6532-6539, 2023 11 14.
Article in English | MEDLINE | ID: mdl-36735769

ABSTRACT

Children with Down syndrome (DS) are at a significantly higher risk of developing acute myeloid leukemia, also termed myeloid leukemia associated with DS (ML-DS). In contrast to the highly favorable prognosis of primary ML-DS, the limited data that are available for children who relapse or who have refractory ML-DS (r/r ML-DS) suggest a dismal prognosis. There are few clinical trials and no standardized treatment approach for this population. We conducted a retrospective analysis of international study groups and pediatric oncology centers and identified 62 patients who received treatment with curative intent for r/r ML-DS between year 2000 to 2021. Median time from diagnosis to relapse was 6.8 (range, 1.1-45.5) months. Three-year event-free survival (EFS) and overall survival (OS) were 20.9 ± 5.3% and 22.1 ± 5.4%, respectively. Survival was associated with receipt of hematopoietic stem cell transplantation (HSCT) (hazard ratio [HR], 0.28), duration of first complete remission (CR1) (HR, 0.31 for > 12 months) and attainment of remission after relapse (HR, 4.03). Patients who achieved complete remission (CR) before HSCT, had an improved OS and EFS of 56.0 ± 11.8% and 50.5 ± 11.9%, respectively compared to those who underwent HSCT without CR (3-year OS and EFS of 10.0 ± 9.5%). Treatment failure after HSCT was predominantly because of disease recurrence (52%) followed by treatment-related mortality (10%). The prognosis of r/r ML-DS remains dismal even in the current treatment period and serve as a reference point for current prognostication and future interventional studies. Clinical trials aimed at improving the survival of patients with r/r ML-DS are needed.


Subject(s)
Down Syndrome , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Child , Retrospective Studies , Down Syndrome/complications , Down Syndrome/therapy , Recurrence
16.
Br J Haematol ; 200(5): 622-632, 2023 03.
Article in English | MEDLINE | ID: mdl-36385618

ABSTRACT

High genetic heterogeneity in the human leukocyte antigen (HLA) increases the likelihood of efficient immune response to pathogens and tumours. As measure of HLA diversity, HLA evolutionary divergence (HED) has been shown to predict the response of tumours to immunotherapy and haematopoietic stem cell transplantation (HSCT) in adults. We retrospectively investigated the association of HED with outcomes of 153 paediatric/young adults patients, treated for malignant disorders with HSCT from 9-10/10 HLA-matched unrelated donors. HED was calculated as pairwise genetic distance between alleles in patient HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1, using the locus median to stratify patients with 'high' or 'low' HED. Patients with high HED-B and -DRB1 showed significantly improved disease-free survival (DFS), especially when combined (70.8% vs 53.7% p = 0.008). High HED-B + -DRB1 was also associated with improved overall survival (OS) (82.1 vs 66.4% p = 0.014), and concomitant reduction of non-relapse-mortality (5.1% vs 21.1% p = 0.006). The impact on OS and DFS of combined HED-B + -DRB1 was confirmed in multivariate analysis [hazard ratio (HR) 0.39, p = 0.009; and HR 0.45, p = 0.007 respectively]. Only high HED scores for HLA-DPB1 were associated, in univariate analysis, with reduced incidence of relapse (15.9% vs 31.1%, p = 0.03). These results support HED as prognostic marker in allogeneic HSCT and, if confirmed in larger cohorts, would allow its use to inform clinical risk and potentially influence clinical practice.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Neoplasms , Humans , Child , Young Adult , Unrelated Donors , Retrospective Studies , Histocompatibility Testing , Hematopoietic Stem Cell Transplantation/adverse effects , Neoplasms/etiology
17.
Oncol Rep ; 48(6)2022 Dec.
Article in English | MEDLINE | ID: mdl-36321792

ABSTRACT

Novel therapeutic strategies are needed for paediatric patients affected by Acute Myeloid Leukaemia (AML), particularly for those at high-risk for relapse. MicroRNAs (miRs) have been extensively studied as biomarkers in cancer and haematological disorders, and their expression has been correlated to the presence of recurrent molecular abnormalities, expression of oncogenes, as well as to prognosis/clinical outcome. In the present study, expression signatures of different miRs related both to presence of myeloid/lymphoid or mixed-lineage leukaemia 1 and Fms like tyrosine kinase 3 internal tandem duplications rearrangements and to the clinical outcome of paediatric patients with AML were identified. Notably, miR-221-3p and miR-222-3p resulted as a possible relapse-risk related miR. Thus, miR-221-3p and miR-222-3p expression modulation was investigated by using a Bromodomain­containing protein 4 (BRD4) inhibitor (JQ1) and a natural compound that acts as histone acetyl transferase inhibitor (curcumin), alone or in association, in order to decrease acetylation of histone tails and potentiate the effect of BRD4 inhibition. JQ1 modulates miR-221-3p and miR-222-3p expression in AML with a synergic effect when associated with curcumin. Moreover, changes were observed in the expression of CDKN1B, a known target of miR-221-3p and miR-222-3p, increase in apoptosis and downregulation of miR-221-3p and miR-222-3p expression in CD34+ AML primary cells. Altogether, these findings suggested that several miRs expression signatures at diagnosis may be used for risk stratification and as relapse prediction biomarkers in paediatric AML outlining that epigenetic drugs, could represent a novel therapeutic strategy for high-risk paediatric patients with AML. For these epigenetic drugs, additional research for enhancing activity, bioavailability and safety is needed.


Subject(s)
Curcumin , Leukemia, Myeloid, Acute , MicroRNAs , Humans , Child , Nuclear Proteins/metabolism , Curcumin/pharmacology , Histones , Transcription Factors/metabolism , Neoplasm Recurrence, Local , Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Apoptosis , Cell Cycle Proteins/metabolism
18.
J Hematol Oncol ; 15(1): 163, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335396

ABSTRACT

BACKGROUND: Paediatric acute myeloid leukaemia (AML) is characterized by poor outcomes in patients with relapsed/refractory disease, despite the improvements in intensive standard therapy. The leukaemic cells of paediatric AML patients show high expression of the CD123 antigen, and this finding provides the biological basis to target CD123 with the chimeric antigen receptor (CAR). However, CAR.CD123 therapy in AML is hampered by on-target off-tumour toxicity and a long "vein-to-vein" time. METHODS: We developed an off-the-shelf product based on allogeneic natural killer (NK) cells derived from the peripheral blood of healthy donors and engineered them to express a second-generation CAR targeting CD123 (CAR.CD123). RESULTS: CAR.CD123-NK cells showed significant anti-leukaemia activity not only in vitro against CD123+ AML cell lines and CD123+ primary blasts but also in two animal models of human AML-bearing immune-deficient mice. Data on anti-leukaemia activity were also corroborated by the quantification of inflammatory cytokines, namely granzyme B (Granz B), interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α), both in vitro and in the plasma of mice treated with CAR.CD123-NK cells. To evaluate and compare the on-target off-tumour effects of CAR.CD123-T and NK cells, we engrafted human haematopoietic cells (hHCs) in an immune-deficient mouse model. All mice infused with CAR.CD123-T cells died by Day 5, developing toxicity against primary human bone marrow (BM) cells with a decreased number of total hCD45+ cells and, in particular, of hCD34+CD38- stem cells. In contrast, treatment with CAR.CD123-NK cells was not associated with toxicity, and all mice were alive at the end of the experiments. Finally, in a mouse model engrafted with human endothelial tissues, we demonstrated that CAR.CD123-NK cells were characterized by negligible endothelial toxicity when compared to CAR.CD123-T cells. CONCLUSIONS: Our data indicate the feasibility of an innovative off-the-shelf therapeutic strategy based on CAR.CD123-NK cells, characterized by remarkable efficacy and an improved safety profile compared to CAR.CD123-T cells. These findings open a novel intriguing scenario not only for the treatment of refractory/resistant AML patients but also to further investigate the use of CAR-NK cells in other cancers characterized by highly difficult targeting with the most conventional T effector cells.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Child , Humans , Mice , Animals , Interleukin-3 Receptor alpha Subunit , Receptors, Chimeric Antigen/therapeutic use , Receptors, Chimeric Antigen/metabolism , Leukemia, Myeloid, Acute/pathology , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...