Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 31(10): 3215-21, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25674832

ABSTRACT

In this work, macroporous materials made of polydimethylsiloxane, a soft silicone rubber, are prepared using UV polymerization with an emulsion-templating procedure. The porosity of the final materials can be precisely controlled by adjusting the volume of the dispersed phase. We show that the porous structure of the materials is the template of the droplets of the initial emulsions. Mechanical tests show that the materials Young's moduli decrease with the porosity of the materials. Acoustic measurements indicate that, in such a porous elastomeric matrix, the sound speed also decreases dramatically as soon as the porosity increases to attain values of as low as 80 m/s. The results are compared to earlier ones on silica aerogels and are interpreted within the framework of a simple theoretical approach. We show that the very low sound speed value is a consequence of the low value of the polymer shear modulus. This explains why such porous soft silicone rubbers are so efficient at playing the role of slow-soft resonators in acoustic metamaterials. Moreover, the fast rate of polymerization of such UV-curable fluid allows for a facile shaping of the final material as beads or rods in microfluidic devices.1.

2.
Nat Mater ; 14(4): 384-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25502100

ABSTRACT

Many efforts have been devoted to the design and achievement of negative-refractive-index metamaterials since the 2000s. One of the challenges at present is to extend that field beyond electromagnetism by realizing three-dimensional (3D) media with negative acoustic indices. We report a new class of locally resonant ultrasonic metafluids consisting of a concentrated suspension of macroporous microbeads engineered using soft-matter techniques. The propagation of Gaussian pulses within these random distributions of 'ultra-slow' Mie resonators is investigated through in situ ultrasonic experiments. The real part of the acoustic index is shown to be negative (up to almost - 1) over broad frequency bandwidths, depending on the volume fraction of the microbeads as predicted by multiple-scattering calculations. These soft 3D acoustic metamaterials open the way for key applications such as sub-wavelength imaging and transformation acoustics, which require the production of acoustic devices with negative or zero-valued indices.

SELECTION OF CITATIONS
SEARCH DETAIL
...