Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Kidney Med ; 6(3): 100783, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38419787

ABSTRACT

Rationale & Objective: Kidney function progressively declines in most patients with type 2 diabetes (T2DM). Many develop progressive chronic kidney disease (CKD), but some experience a more rapid decline, with a greater risk of kidney failure and cardiovascular disease. In EMPA-REG OUTCOME, empagliflozin was associated with slower kidney disease progression. This post hoc analysis evaluated the effect of empagliflozin (pooled doses) on the prevalence of a "rapid decliner" phenotype, defined by an annual estimated glomerular filtration rate (eGFR) decline of >3 mL/min/1.73 m2. Study Design: This was an exploratory analysis of EMPA-REG OUTCOME, a large randomized, double-blind, placebo-controlled trial in adults with T2DM, established cardiovascular disease and an eGFR of ≥30 mL/min/1.73 m2. Setting & Participants: Analysis was undertaken on 6,967 participants (99.2%) in whom serial eGFR data was available. Interventions: Patients were randomized (1:1:1) to empagliflozin 10 mg, 25 mg, or placebo in addition to standard of care. Outcomes: Annual change in eGFR over the maintenance phase of treatment (week 4 to last value on treatment) was calculated using linear regression models. Logistic regression analysis was used to investigate differences in rapid decline between the treatment groups. Results: Over the study period, a rapid decliner phenotype was observed in 188 (9.5%) participants receiving placebo and 134 (3.4%) receiving empagliflozin. After adjusting for other risk factors, this equated to a two-third reduction in odds (OR, 0.32; 95% CI, 0.25-0.40; P < 0.001) among participants receiving empagliflozin versus placebo. A comparable risk reduction was observed using a threshold of eGFR decline of >5 mL/min/1.73 m2/y (empagliflozin vs placebo, 43 [1.1%] vs 44 [2.2%] participants; OR, 0.47; 95% CI, 0.31-0.72; P < 0.001). Limitations: This is a post hoc analysis of a trial undertaken in participants with T2DM and CVD. Generalization of findings to other settings remains to be established. Conclusions: Patients receiving empagliflozin were significantly less likely to experience a rapid decline in eGFR over a median of 2.6 years of exposure to the study drug. Funding: The Boehringer Ingelheim and Eli Lilly and Company Diabetes Alliance. Trial Registration: clinicaltrials.gov ID: NCT01131676.


In most people with type 2 diabetes, their kidney function starts to decline over time. However, in some people, this can happen more rapidly, which can increase their risk of kidney or cardiovascular disease. A major study, EMPA-REG OUTCOME, has shown that empagliflozin, which helps to control blood sugar in people with type 2 diabetes, also reduced the risk of cardiovascular disease events and slowed the progression of kidney disease, when compared with people in the study who received placebo. In this new research from the same major study empagliflozin, compared with a placebo, was shown to reduce the risk of people having a rapid decline in their kidney function over the 3 years of the study.

2.
Endocr Connect ; 12(8)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37159343

ABSTRACT

Sodium-glucose co-transporter 2 (SGLT2) inhibitors have recently emerged as an effective means to protect kidney function in people with type 2 diabetes and chronic kidney disease (CKD). In this review, we explore the role of SGLT2 inhibition in these individuals. SGLT2 inhibitors specifically act to inhibit sodium and glucose reabsorption in the early proximal tubule of the renal nephron. Although originally developed as glucose-lowering agents through their ability to induce glycosuria, it became apparent in cardiovascular outcome trials that the trajectory of kidney function decline was significantly slowed and the incidence of serious falls in kidney function was reduced in participants receiving an SGLT2 inhibitor. These observations have recently led to specific outcome trials in participants with CKD, including DAPA-CKD, CREDENCE and EMPA-KIDNEY, and real-world studies, like CVD-REAL-3, that have confirmed the observation of kidney benefits in this setting. In response, recent KDIGO Guidelines have recommended the use of SGLT2 inhibitors as first-line therapy in patients with CKD, alongside statins, renin-angiotensin-aldosterone system inhibitors and multifactorial risk factor management as indicated. However, SGLT2 inhibitors remain significantly underutilized in the setting of CKD. Indeed, an inertia paradox exists, with patients with more severe disease less likely to receive an SGLT2 inhibitor. Concerns regarding safety appear unfounded, as acute kidney injury, hyperkalaemia, major acute cardiovascular events and cardiac death in patients with CKD appear to be lower following SGLT2 inhibition. The first-in-class indication of dapagliflozin for CKD may begin a new approach to managing kidney disease in type 2 diabetes.

3.
Biomed Pharmacother ; 158: 114211, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916437

ABSTRACT

Methylglyoxal (MGO) is a reactive glucose metabolite linked to diabetic cardiovascular disease (CVD). MGO levels surge during intermittent hyperglycemia. We hypothesize that these MGO spikes contribute to atherosclerosis, and that pyridoxamine as a MGO quencher prevents this injury. To study this, we intravenously injected normoglycemic 8-week old male C57Bl6 ApoE-/- mice with normal saline (NS, n = 10) or 25 µg MGO for 10 consecutive weeks (MGOiv, n = 11) with or without 1 g/L pyridoxamine (MGOiv+PD, n = 11) in the drinking water. We measured circulating immune cells by flow cytometry. We quantified aortic arch lesion area in aortic roots after Sudan-black staining. We quantified the expression of inflammatory genes in the aorta by qPCR. Intermittent MGO spikes weekly increased atherosclerotic burden in the arch 1.8-fold (NS: 0.9 ± 0.1 vs 1.6 ± 0.2 %), and this was prevented by pyridoxamine (0.8 ± 0.1 %). MGOiv spikes increased circulating neutrophils and monocytes (2-fold relative to NS) and the expression of ICAM (3-fold), RAGE (5-fold), S100A9 (2-fold) and MCP1 (2-fold). All these changes were attenuated by pyridoxamine. This study suggests that MGO spikes damages the vasculature independently of plasma glucose levels. Pyridoxamine and potentially other approaches to reduce MGO may prevent excess cardiovascular risk in diabetes.


Subject(s)
Aorta, Thoracic , Atherosclerosis , Mice , Male , Animals , Aorta, Thoracic/metabolism , Pyridoxamine/pharmacology , Pyruvaldehyde/metabolism , Magnesium Oxide , Atherosclerosis/prevention & control , Apolipoproteins E
4.
Cell Metab ; 35(2): 253-273, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36754019

ABSTRACT

Recent clinical trials in people with type 2 diabetes have demonstrated beneficial actions on heart and kidney outcomes following treatment with GLP-1RAs. In part, these actions are consistent with improved glucose control and significant weight loss. But GLP-1RAs may also have additive benefits by improving postprandial dysmetabolism. In diabetes, dysregulated postprandial nutrient excursions trigger inflammation, oxidative stress, endothelial dysfunction, thrombogenicity, and endotoxemia; alter hormone levels; and modulate cardiac output and regional blood and lymphatic flow. In this perspective, we explore the actions of GLP-1RAs on the postprandial state and their potential role in end-organ benefits observed in recent trials.


Subject(s)
Cardiovascular System , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Hypoglycemic Agents/therapeutic use , Kidney
5.
J Clin Invest ; 133(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36633903

ABSTRACT

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined. While methylation is known to alter gene expression, the importance of this causal relationship is obscured by array-based technologies since coverage outside promoter regions is low. To overcome these challenges, we performed methylation sequencing using leukocytes derived from participants of the Finnish Diabetic Nephropathy (FinnDiane) type 1 diabetes (T1D) study (n = 39) that was subsequently replicated in a larger validation cohort (n = 296). Gene body-related regions made up more than 60% of the methylation differences and emphasized the importance of methylation sequencing. We observed differentially methylated genes associated with DN in 3 independent T1D registries originating from Denmark (n = 445), Hong Kong (n = 107), and Thailand (n = 130). Reduced DNA methylation at CTCF and Pol2B sites was tightly connected with DN pathways that include insulin signaling, lipid metabolism, and fibrosis. To define the pathophysiological significance of these population findings, methylation indices were assessed in human renal cells such as podocytes and proximal convoluted tubule cells. The expression of core genes was associated with reduced methylation, elevated CTCF and Pol2B binding, and the activation of insulin-signaling phosphoproteins in hyperglycemic cells. These experimental observations also closely parallel methylation-mediated regulation in human macrophages and vascular endothelial cells.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Genome-Wide Association Study , Endothelial Cells/metabolism , DNA Methylation , Insulin/metabolism
6.
Antioxidants (Basel) ; 11(5)2022 May 18.
Article in English | MEDLINE | ID: mdl-35624851

ABSTRACT

Circulating levels of soluble ACE2 are increased by diabetes. Although this increase is associated with the presence and severity of cardiovascular disease, the specific role of soluble ACE2 in atherogenesis is unclear. Previous studies suggested that, like circulating ACE, soluble ACE2 plays a limited role in vascular homeostasis. To challenge this hypothesis, we aimed to selectively increase circulating ACE2 and measure its effects on angiotensin II dependent atherogenesis. Firstly, in Ace2/ApoE DKO mice, restoration of circulating ACE2 with recombinant murine soluble (rmACE219-613; 1 mg/kg/alternate day IP) reduced plaque accumulation in the aortic arch, suggesting that the phenotype may be driven as much by loss of soluble ACE2 as the reduction in local ACE2. Secondly, in diabetic ApoE KO mice, where activation of the renin angiotensin system drives accelerated atherosclerosis, rmACE219-613 also reduced plaque accumulation in the aorta after 6 weeks. Thirdly, to ensure consistent long-term delivery of soluble ACE2, an intramuscular injection was used to deliver a DNA minicircle encoding ACE219-613. This strategy efficiently increased circulating soluble ACE2 and reduced atherogenesis and albuminuria in diabetic ApoE KO mice followed for 10 weeks. We propose that soluble ACE2 has independent vasculoprotective effects. Future strategies that increase soluble ACE2 may reduce accelerated atherosclerosis in diabetes and other states in which the renin angiotensin system is upregulated.

7.
Cureus ; 14(1): e21701, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35237491

ABSTRACT

Although peritonsillar abscesses (PTAs) are a common presentation in pediatric patients, there are very few reports on a pediatric patient with both a PTA and uvular hydrops. Our patient presented to the emergency room after being unsuccessfully treated for pharyngitis, with odynophagia, dyspnea, muffled voice, drooling, and trismus. On physical examination, we observed a PTA as well as an edematous and erythematous uvula. Following the standard of care, the patient underwent a needle aspiration in the emergency department and subsequently was admitted overnight for observation. The patient had great symptom relief after undergoing drainage of his PTA and was discharged the next morning with symptom resolution of his dyspnea and odynophagia. We recommend drainage and close monitoring for airway compromise as an appropriate treatment course for PTAs and concurrent uvular hydrops.

8.
Adv Chronic Kidney Dis ; 28(4): 282-289, 2021 07.
Article in English | MEDLINE | ID: mdl-34922684

ABSTRACT

The pathobiology of diabetic kidney disease (DKD) involves an interplay between all the many different cell types that exist within the kidney and their shared and cumulative dysfunction in response to chronic hyperglycemia. DKD is characteriszed by morphological changes including tubular hypertrophy, podocyte dysfunction, mesangial expansion and mesangiolysis, endothelitis and capillary rarefaction, arteriolar hyalinosis, basement membrane thickening, and ultimately nephron dropout and tubulointerstitial fibrosis. These adaptive but ultimately maladaptive changes accelerate the progression of lesions in the diabetic kidney by increasing mechanical and oxidative stress, hypoxia, fibrogenesis, inflammation, senescence, and apoptosis. In particular, atrophy at the critical junction between Bowman's capsule and the proximal tubule likely represent the leading cause of nephron dropout and kidney function decline in DKD. Preventing, slowing, or reversing these changes should be the target of future "smart" therapies for patients with DKD, many of which are now under development.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Podocytes , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Fibrosis , Humans , Kidney/pathology , Kidney Tubules, Proximal , Podocytes/pathology
9.
Cureus ; 13(5): e14936, 2021 May 10.
Article in English | MEDLINE | ID: mdl-34123633

ABSTRACT

Background The current trend in management of first-time primary spontaneous pneumothorax (PSP) in children is to obtain a high-resolution chest computerized tomography (HRCT) scan to look for bleb/bullae disease or other forms of structural lung disease. We aimed to evaluate the significance of HRCT findings in relation to initial management strategies, and we hypothesized that these findings do not guide management.  Methods We evaluated patients with first-time PSP in a single-institution, retrospective, longitudinal study. Data were obtained through direct chart review. The primary endpoint was the percentage of patients who underwent surgical intervention after HRCT. Results We identified 10 children from 10 to 17 years old from January 2013 to November 2019 who met criteria for the study. Seven out of 10 patients (70%) had HRCT after the first-time PSP during the same hospital stay. Blebs/bullae were discovered in five out of seven (71%) of those patients. Two of those five patients had subsequent surgical intervention (40%) before a recurrence. Of the three patients with blebs/bullae identified on HRCT treated without initial surgery, two had a recurrence of PSP and subsequently underwent VATS with blebectomy and pleurodesis. Among the patients without initial HRCT, there were no recurrent cases of PSP noted. Conclusions Our study suggests there is value in obtaining HRCT after the first time PSP, as these results can be used to guide management strategies. Further studies in pediatric PSP are needed to validate the sensitivity of HRCT in bleb detection, the predictive value of bleb disease and recurrence, and the benefits and risks of early surgical intervention.

10.
Cureus ; 13(4): e14506, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-34007759

ABSTRACT

Ogilvie syndrome, or acute colonic pseudo-obstruction, is a rare disease in adults, and it is seldom seen in pediatric patients. It was first described in 1948 by Dr. William Ogilvie. Unless promptly recognized and treated, it carries the risk of colonic ischemia and perforation. In this report, we present the case of a 10-year-old patient who developed Ogilvie syndrome and was successfully treated with conservative medical management including bowel rest, rectal decompression, along with the addition of erythromycin. The patient responded well to the treatment and was able to be discharged home without event.

11.
Diabet Med ; 38(11): e14608, 2021 11.
Article in English | MEDLINE | ID: mdl-34043837

ABSTRACT

AIMS: Aim of this study is to report severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, responsible for coronavirus disease 2019 (COVID-19), as a possible cause for type 1 diabetes by providing an illustrative clinical case of a man aged 45 years presenting with antibody-negative diabetic ketoacidosis post-recovery from COVID-19 pneumonia and to explore the potential for SARS-CoV-2 to adhere to human islet cells. METHODS: Explanted human islet cells from three independent solid organ donors were incubated with the SARS-CoV-2 spike protein receptor biding domain (RBD) fused to a green fluorescent protein (GFP) or a control-GFP, with differential adherence established by flow cytometry. RESULTS: Flow cytometry revealed dose-dependent specific binding of RBD-GFP to islet cells when compared to control-GFP. CONCLUSIONS: Although a causal basis remains to be established, our case and in vitro data highlight a potential mechanism by which SARS-CoV-2 infection may result in antibody-negative type 1 diabetes.


Subject(s)
COVID-19/therapy , Diabetes Mellitus, Type 1/diagnosis , Diabetic Ketoacidosis/diagnosis , Islets of Langerhans/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/etiology , Diabetic Ketoacidosis/etiology , Diabetic Ketoacidosis/therapy , Humans , In Vitro Techniques , Male , Middle Aged
12.
Cureus ; 13(1): e12885, 2021 Jan 24.
Article in English | MEDLINE | ID: mdl-33643732

ABSTRACT

Acute hemorrhagic leukoencephalitis (AHLE) is a rare demyelinating disease of the central nervous system that typically follows a viral or bacterial respiratory infection. We report the first described case of AHLE following influenza A (H3N2) in an otherwise healthy 15-year-old girl with no relevant past medical history who initially presented to the emergency department (ED) by emergency medical services (EMS) with decorticate posturing and right gaze deviation after being found unresponsive at home. Subsequent testing for Influenza A H3N2 via viral polymerase chain reaction (PCR) was positive. Clinical correlation and brain MRI confirmed AHLE. At follow-up three months after discharge, she was found to have intellectual functioning in the extremely low range and she still had deficits in motor skills eight months after discharge. While the patient was reportedly up-to-date on her routine scheduled childhood vaccinations, she had not received her annual influenza vaccination that year. Pediatric infectious disease physicians and neurologists should consider the diagnosis of AHLE in unvaccinated, previously healthy patients with new and rapid onset of neurological symptoms following influenza infection.

13.
Sci Rep ; 11(1): 1638, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33452386

ABSTRACT

We investigated the association between diet and risk of hospitalisation for diabetic ketoacidosis (DKA) or hypoglycaemia in type 1 diabetes. Food records were used to assess dietary intake. Data on DKA and hypoglycaemia hospitalisations, within two years of dietary assessments, were obtained from registries. Analyses were conducted with and without macronutrient substitution. Data were available from 1391 participants, 28 (2.0%) and 55 (4.0%) of whom were hospitalised due to DKA or hypoglycaemia, respectively. In the adjusted model, self-reported alcohol intake was associated with increased (per 10 g: B = 1.463, 95% CI = 1.114-1.922, p = 0.006; per E%: B = 1.113, 95% CI = 1.027-1.206, p = 0.009), and fibre intake with reduced (per g/MJ: B = 0.934, 95% CI = 0.878-0.995, p = 0.034) risk of DKA hospitalisation. Substituting carbohydrates for fats was associated with increased risk for hypoglycaemia hospitalisation (B = 1.361, 95% CI = 1.031-1.795, p = 0.029), while substituting alcohol for carbohydrates (B = 1.644, 95% CI = 1.006-2.685, p = 0.047) or proteins (B = 2.278, 95% CI = 1.038-4.999, p = 0.040) increased the risk for DKA hospitalisation. In conclusion, refraining from alcohol intake is a preventable risk factor for DKA, while higher fibre intake seems rather protective. Increasing carbohydrate intake while decreasing that of fats, is associated with higher hypoglycaemia risk. Whether this is a cause or effect of hypoglycaemia remains to be established.


Subject(s)
Diabetes Mellitus, Type 1/pathology , Diabetic Ketoacidosis/diagnosis , Hospitalization/statistics & numerical data , Hypoglycemia/diagnosis , Adult , Alcohol Drinking , Cross-Sectional Studies , Diabetes Mellitus, Type 1/complications , Diabetic Ketoacidosis/complications , Dietary Fiber/administration & dosage , Eating , Female , Humans , Hypoglycemia/complications , Male , Middle Aged , Risk Factors , Self Report
14.
World J Cardiol ; 12(8): 409-418, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32879703

ABSTRACT

Diabetic heart disease (DHD) can be classified as a primary consequence from several pathophysiological manifestation of diabetes mellitus (DM) on cardiac tissues or secondarily in extracardiac tissues and is encountered as either primary or secondary complications of DM. Endothelitis is inflammation of the vascular endothelium and is likely to be seen in the majority of patients who start to manifest an end organ complication of DM in this case DHD. Diabetes is a leading cause for many cardiovascular syndromes and diseases including congestive heart failure (CHF) however much remains unknown about the transition from diagnosed DM to clinical state and the contribution of the various mechanical and counterregulatory systems in the manifested complaint. Diastolic heart failure or heart failure with preserved ejection fraction (DHF/HFpEF), accounts for half of all CHF presentations, has DM as a major contributor, however, there remain large gaps in clinical and pathophysiological understanding. This review aims to explore the microscopic aspects in diabetic endothelitis and provide a clinical link to with context to HFpEF.

15.
J Theor Biol ; 505: 110419, 2020 11 21.
Article in English | MEDLINE | ID: mdl-32735991

ABSTRACT

Group defense is a phenomenon that occurs in many predator-prey systems. Different functional responses with substantially different properties representing such a mechanism exist. Here, we develop a functional response using timescale separation. A prey-dependent catch rate represents the group defense. The resulting functional response contains a single parameter that controls whether the group defense functional response is saturating or dome-shaped. Based on that, we show that the catch rate must not increase monotonically with increasing prey density to lead to a dome-shaped functional response. We apply bifurcation analysis to show that non-monotonic group defense is usually more successful. However, we also find parameter regions in which a paradox occurs. In this case, higher group defense can give rise to a stable limit cycle, while for lower values, the predator would go extinct. The study does not only provide valuable insight on how to include functional responses representing group defense in mathematical models, but it also clarifies under which circumstances the usage of different functional responses is appropriate.


Subject(s)
Food Chain , Predatory Behavior , Animals , Ecosystem , Models, Biological , Population Dynamics
16.
Circ Res ; 127(7): 877-892, 2020 09 11.
Article in English | MEDLINE | ID: mdl-32564710

ABSTRACT

RATIONALE: Treatment efficacy for diabetes mellitus is largely determined by assessment of HbA1c (glycated hemoglobin A1c) levels, which poorly reflects direct glucose variation. People with prediabetes and diabetes mellitus spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH), appear to be an independent risk factor for cardiovascular disease, but the pathological basis for this association is unclear. OBJECTIVE: To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. METHODS AND RESULTS: To create a mouse model of TIH, we administered 4 bolus doses of glucose at 2-hour intervals intraperitoneally once to WT (wild type) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes mellitus. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8, or its cognate receptor Rage prevented monocytosis. Mechanistically, glucose uptake via GLUT (glucose transporter)-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. CONCLUSIONS: Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to cardiovascular disease. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE (receptor for advanced glycation end products) axis could represent a viable approach to protect the vulnerable blood vessels in diabetes mellitus. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Atherosclerosis/etiology , Blood Glucose/metabolism , Hyperglycemia/complications , Monocytes/metabolism , Myelopoiesis , Neutrophils/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Biomarkers/blood , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Diet, High-Fat , Disease Models, Animal , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glycolysis , Hyperglycemia/blood , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Monocytes/pathology , Neutrophils/pathology , Plaque, Atherosclerotic , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
17.
Diabetologia ; 63(7): 1424-1434, 2020 07.
Article in English | MEDLINE | ID: mdl-32372207

ABSTRACT

AIMS/HYPOTHESIS: We determined whether empagliflozin altered renal sympathetic nerve activity (RSNA) and baroreflexes in a diabetes model in conscious rabbits. METHODS: Diabetes was induced by alloxan, and RSNA, mean arterial pressure (MAP) and heart rate were measured before and after 1 week of treatment with empagliflozin, insulin, the diuretic acetazolamide or the ACE inhibitor perindopril, or no treatment, in conscious rabbits. RESULTS: Four weeks after alloxan administration, blood glucose was threefold and MAP 9% higher than non-diabetic controls (p < 0.05). One week of treatment with empagliflozin produced a stable fall in blood glucose (-43%) and increased water intake (+49%) but did not change RSNA, MAP or heart rate compared with untreated diabetic rabbits. The maximum RSNA to hypotension was augmented by 75% (p < 0.01) in diabetic rabbits but the heart rate baroreflex was unaltered. Empagliflozin and acetazolamide reduced the augmentation of the RSNA baroreflex (p < 0.05) to be similar to the non-diabetic group. Noradrenaline (norepinephrine) spillover was similar in untreated diabetic and non-diabetic rabbits but twofold greater in empagliflozin- and acetazolamide-treated rabbits (p < 0.05). CONCLUSIONS/INTERPRETATION: As empagliflozin can restore diabetes-induced augmented sympathetic reflexes, this may be beneficial in diabetic patients. A similar action of the diuretic acetazolamide suggests that the mechanism may involve increased sodium and water excretion. Graphical abstract.


Subject(s)
Benzhydryl Compounds/therapeutic use , Glucosides/therapeutic use , Animals , Baroreflex/drug effects , Blood Glucose/drug effects , Blood Pressure/drug effects , Body Weight/drug effects , Heart Rate/drug effects , Male , Perindopril/pharmacology , Rabbits , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/metabolism
18.
J Nephrol ; 33(5): 909-915, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32170575

ABSTRACT

Increased glycolytic flux into the diabetic kidney, combined with glycolytic inefficiencies introduced by oxidative stress, acts to increase the generation of triose-phosphate intermediates, which spontaneously degrade to form methylglyoxal. At the same time, the glyoxalase-catalysed pathway that degrades excess methylglyoxal is impaired. The resulting dicarbonyl stress increases the accumulation of Advanced Glycation End-products (AGEs), as highly reactive dicarbonyls modify proteins, DNA, phospholipids and even small molecules like glutathione and nitric oxide. The resulting molecular dysfunction, contributes to the development and progression of kidney disease in diabetes. The importance of the dicarbonyls in diabetic kidney disease is clearly demonstrated by the reno-protective benefits of structurally-disparate dicarbonyl scavengers in experimental studies. Equally, modulating the glyoxalase pathway is able to alter both dicarbonyl generation and renal dysfunction in the presence and absence of hyperglycaemia. However, beyond improving glycemia control and reducing oxidative stress, an effective way to attenuate dicarbonyl-mediated damage in patients with diabetic kidney disease remains an elusive goal.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Lactoylglutathione Lyase , Aging , Diabetic Nephropathies/etiology , Glycation End Products, Advanced , Humans , Pyruvaldehyde
19.
Curr Cardiol Rep ; 21(8): 87, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31342185

ABSTRACT

PURPOSE OF REVIEW: Coronary artery disease (CAD) is the leading contributor to cardiovascular disease; it is the most prevalent non-communicable disease globally and has high morbidity, mortality and health care cost. Risk stratification is defined as prevention or containment of disease prior to it occurring or progressing, and non-invasive surrogates include history, examination, biomarkers and non-invasive imaging. This review aims to highlight advancement in current diagnostic strategies and explores gaps for CAD secondary to atherosclerosis and non-obstructive vascular diseases. RECENT FINDINGS: Cardiac risk scores have largely proven inadequate in risk stratifying heterogeneous patient populations. Greater emphasis should also be provided to posttest risk stratification. Non-invasive imaging with MRI is the most accurate but least cost efficacious presently due to availability and expertise. Echocardiography and nuclear imaging have good accuracy, but radiation limits the latter. Novel echocardiographic technologies may increase its appeal. Cardiac CT angiography is increasingly promising. Non-invasive and minimally invasive imaging has significantly influenced the cost-efficacy trajectory of coronary artery disease diagnosis and management. Recent studies suggest that future guidelines will incorporate more subclassifications from the findings of these novel technologies and for more diverse patient demographics.


Subject(s)
Computed Tomography Angiography/methods , Coronary Artery Disease/diagnostic imaging , Echocardiography/methods , Coronary Angiography , Coronary Artery Disease/classification , Humans , Risk Assessment
20.
J Clin Invest ; 129(1): 406-421, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30530993

ABSTRACT

Activation of the type 1 angiotensin II receptor (AT1) triggers proinflammatory signaling through pathways independent of classical Gq signaling that regulate vascular homeostasis. Here, we report that the AT1 receptor preformed a heteromeric complex with the receptor for advanced glycation endproducts (RAGE). Activation of the AT1 receptor by angiotensin II (Ang II) triggered transactivation of the cytosolic tail of RAGE and NF-κB-driven proinflammatory gene expression independently of the liberation of RAGE ligands or the ligand-binding ectodomain of RAGE. The importance of this transactivation pathway was demonstrated by our finding that adverse proinflammatory signaling events induced by AT1 receptor activation were attenuated when RAGE was deleted or transactivation of its cytosolic tail was inhibited. At the same time, classical homeostatic Gq signaling pathways were unaffected by RAGE deletion or inhibition. These data position RAGE transactivation by the AT1 receptor as a target for vasculoprotective interventions. As proof of concept, we showed that treatment with the mutant RAGE peptide S391A-RAGE362-404 was able to inhibit transactivation of RAGE and attenuate Ang II-dependent inflammation and atherogenesis. Furthermore, treatment with WT RAGE362-404 restored Ang II-dependent atherogenesis in Ager/Apoe-KO mice, without restoring ligand-mediated signaling via RAGE, suggesting that the major effector of RAGE activation was its transactivation.


Subject(s)
Atherosclerosis/metabolism , Receptor for Advanced Glycation End Products/metabolism , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction , Transcriptional Activation , Animals , Atherosclerosis/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Gene Deletion , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Knockout, ApoE , Protein Domains , Receptor, Angiotensin, Type 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...