Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
iScience ; 27(2): 108980, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38333697

ABSTRACT

Light is one of the strongest cues for entrainment of circadian clocks. While some insect species rely only on visual input, others like Drosophila melanogaster use both the visual system and the deep-brain blue-light photoreceptor cryptochrome for entraining circadian rhythms. Here, we used the monarch butterfly Danaus plexippus (dp), which possesses a light-sensitive cryptochrome 1 (dpCry1), to test the conservation of mechanisms of clock entrainment. We showed that loss of functional dpCry1 reduced the amplitude and altered the phase of adult eclosion rhythms, and disrupted brain molecular circadian rhythms. Robust rhythms could be restored by entrainment to temperature cycles, indicating a likely functional core circadian clock in dpCry1 mutants. We also showed that rhythmic flight activity was less robust in dpCry1 mutants, and that visual impairment in dpNinaB1 mutants impacted flight suppression at night. Our data suggest that dpCRY1 is a major photoreceptor for light-entrainment of the monarch circadian clock.

3.
J Neurosci ; 43(45): 7530-7537, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37940589

ABSTRACT

Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.


Subject(s)
Ecosystem , Neurobiology , Humans , Neurons , Temperature
4.
Curr Biol ; 33(10): R415-R417, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37220736

ABSTRACT

The molecular nature of the biological timer used by organisms living in the marine intertidal zone to anticipate wide variations in environmental conditions caused by the tides has remained elusive. A new study reveals that the circadian clock gene bmal1 is required for circatidal rhythms.


Subject(s)
Amphipoda , Circadian Clocks , Animals , Seafood
5.
Article in English | MEDLINE | ID: mdl-37184693

ABSTRACT

Migratory animals can detect and use the Earth's magnetic field for orientation and navigation, sometimes over distances spanning thousands of kilometers. How they do so remains, however, one of the greatest mysteries in all sensory biology. Here, the author reviews the progress made to understand the molecular bases of the animal magnetic sense focusing on insect species, the only species in which genetic studies have so far been possible. The central hypothesis in the field posits that magnetically sensitive radical pairs formed by photoexcitation of cryptochrome proteins are key to animal magnetoreception. The author provides an overview of our current state of knowledge for the involvement of insect light-sensitive type I and light-insensitive type II cryptochromes in this enigmatic sense, and highlights some of the unanswered questions to gain a comprehensive understanding of magnetoreception at the organismal level.


Subject(s)
Cryptochromes , Sensation , Animals , Cryptochromes/metabolism , Insecta
6.
Front Neural Circuits ; 16: 862279, 2022.
Article in English | MEDLINE | ID: mdl-35847485

ABSTRACT

Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation.


Subject(s)
Butterflies , Action Potentials/physiology , Animals , Brain/physiology , Cues , Neurons/physiology
7.
Sci Rep ; 12(1): 6899, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35478212

ABSTRACT

Like other insects, Aedes aegypti displays strong daily patterns in host seeking and mating. Much of these behaviors are believed to be under the control of a circadian clock, an endogenous timekeeping mechanism relying on transcriptional/translational negative feedback loops that drive rhythmic physiology and behavior. To examine the connection between the circadian clock and various Ae. aegypti behaviors, we knocked out the core clock gene cycle using CRISPR/Cas9. We found that the rhythmic pattern and intensity of mRNA expression of seven circadian genes, including AeCyc-/-, were altered across the day/night cycle as well as in constant darkness conditions. We further show that the mutant CYC protein is incapable of forming a dimer with CLK to stimulate per expression and that the endogenous clock is disabled in AeCyc-/- mosquitoes. AeCyc-/- do not display the bimodal locomotor activity pattern of wild type, have a significantly reduced response to host odor, reduced egg hatching rates, delayed embryonic development and reduced adult survival and mating success. Surprisingly however, the propensity to blood feed in AeCyc-/- females is significantly higher than in wildtype females. Together with other recent work on the circadian clock control of key aspects of mosquito biology, our data on how cycle KO affects mosquito behavior and fitness provides a basis for further work into the pathways that connect the mosquito endogenous clock to its vector competence.


Subject(s)
Aedes , Circadian Clocks , Yellow Fever , Aedes/genetics , Animals , Circadian Clocks/genetics , Circadian Rhythm/physiology , Female , Mosquito Vectors
8.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35064085

ABSTRACT

Transcriptional repression drives feedback loops that are central to the generation of circadian (∼24-h) rhythms. In mammals, circadian repression of circadian locomotor output cycles kaput, and brain and muscle ARNT-like 1 (CLOCK:BMAL1)-mediated transcription is provided by a complex formed by PERIOD (PER) and CRYPTOCHROME (CRY) proteins. PER initiates transcriptional repression by binding CLK:BMAL1, which ultimately results in their removal from DNA. Although PER's ability to repress transcription is widely recognized, how PER binding triggers repression by removing CLK:BMAL1 from DNA is not known. Here, we use the monarch butterfly as a model system to address this problem because it harbors a simplified version of the CLK:BMAL1-activated circadian clock present in mammals. We report that an intact CLOCK mouse exon 19 homologous region (CLKe19r) and the histone methyltransferase TRITHORAX (TRX) are both necessary for monarch CLK:BMAL1-mediated transcriptional activation, CLK-PER interaction, and PER repression. Our results show that TRX catalytic activity is essential for CLK-PER interaction and PER repression via the methylation of a single arginine methylation site (R45) on heat shock protein 68 (HSP68). Our study reveals TRX and HSP68 as essential links between circadian activation and PER-mediated repression and suggests a potential conserved clock function for HSPs in eukaryotes.


Subject(s)
Arginine/metabolism , Butterflies/physiology , Chromosomal Proteins, Non-Histone/metabolism , Circadian Rhythm , Heat-Shock Proteins/metabolism , Period Circadian Proteins/metabolism , Amino Acid Sequence , Animals , Circadian Rhythm/genetics , Conserved Sequence , Exons , Heat-Shock Proteins/genetics , Intracellular Signaling Peptides and Proteins , Methylation , Models, Biological , Transcriptional Activation
9.
Curr Biol ; 32(2): 338-349.e5, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34822766

ABSTRACT

For navigation, animals use a robust internal compass. Compass navigation is crucial for long-distance migrating animals like monarch butterflies, which use the sun to navigate over 4,000 km to their overwintering sites every fall. Sun-compass neurons of the central complex have only been recorded in immobile butterflies, and experimental evidence for encoding the animal's heading in these neurons is still missing. Although the activity of central-complex neurons exhibits a locomotor-dependent modulation in many insects, the function of such modulations remains unexplored. Here, we developed tetrode recordings from tethered flying monarch butterflies to reveal how flight modulates heading representation. We found that, during flight, heading-direction neurons change their tuning, transforming the central-complex network to function as a global compass. This compass is characterized by the dominance of processing steering feedback and allows for robust heading representation even under unreliable visual scenarios, an ideal strategy for maintaining a migratory heading over enormous distances.


Subject(s)
Butterflies , Animal Migration/physiology , Animals , Butterflies/physiology , Neurons/physiology
10.
Curr Biol ; 31(19): 4207-4218.e4, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34331859

ABSTRACT

The Drosophila circadian clock is driven by a transcriptional feedback loop in which CLOCK-CYCLE (CLK-CYC) binds E-boxes to transcribe genes encoding the PERIOD-TIMELESS (PER-TIM) repressor, which releases CLK-CYC from E-boxes to inhibit transcription. CLOCKWORK ORANGE (CWO) reinforces PER-TIM repression by binding E-boxes to maintain PER-TIM bound CLK-CYC off DNA, but also promotes CLK-CYC transcription through an unknown mechanism. To determine how CWO activates CLK-CYC transcription, we identified CWO target genes that are upregulated in the absence of CWO repression, conserved in mammals, and preferentially expressed in brain pacemaker neurons. Among the genes identified was a putative ortholog of mouse Clock Interacting Protein Circadian (Cipc), which represses CLOCK-BMAL1 transcription. Reducing or eliminating Drosophila Cipc expression shortens period, while overexpressing Cipc lengthens period, which is consistent with previous work showing that Drosophila Cipc represses CLK-CYC transcription in S2 cells. Cipc represses CLK-CYC transcription in vivo, but not uniformly, as per is strongly repressed, tim less so, and vri hardly at all. Long period rhythms in cwo mutant flies are largely rescued when Cipc expression is reduced or eliminated, indicating that increased Cipc expression mediates the period lengthening of cwo mutants. Consistent with this behavioral rescue, eliminating Cipc rescues the decreased CLK-CYC transcription in cwo mutant flies, where per is strongly rescued, tim is moderately rescued, and vri shows little rescue. These results suggest a mechanism for CWO-dependent CLK-CYC activation: CWO inhibition of CIPC repression promotes CLK-CYC transcription. This mechanism may be conserved since cwo and Cipc perform analogous roles in the mammalian circadian clock.


Subject(s)
Drosophila Proteins , Drosophila , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/genetics , CLOCK Proteins/metabolism , Chlorpropham/metabolism , Circadian Rhythm/genetics , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Gene Expression Regulation , Mammals/genetics , Mice , Transcription, Genetic
11.
Nat Commun ; 12(1): 771, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536422

ABSTRACT

Many animals use the Earth's geomagnetic field for orientation and navigation. Yet, the molecular and cellular underpinnings of the magnetic sense remain largely unknown. A biophysical model proposed that magnetoreception can be achieved through quantum effects of magnetically-sensitive radical pairs formed by the photoexcitation of cryptochrome (CRY) proteins. Studies in Drosophila are the only ones to date to have provided compelling evidence for the ultraviolet (UV)-A/blue light-sensitive type 1 CRY (CRY1) involvement in animal magnetoreception, and surprisingly extended this discovery to the light-insensitive mammalian-like type 2 CRYs (CRY2s) of both monarchs and humans. Here, we show that monarchs respond to a reversal of the inclination of the Earth's magnetic field in an UV-A/blue light and CRY1, but not CRY2, dependent manner. We further demonstrate that both antennae and eyes, which express CRY1, are magnetosensory organs. Our work argues that only light-sensitive CRYs function in animal light-dependent inclination-based magnetic sensing.


Subject(s)
Butterflies/physiology , Cryptochromes/metabolism , Insect Proteins/metabolism , Magnetic Fields , Orientation/physiology , Sensation/physiology , Amino Acid Sequence , Animals , Arthropod Antennae/physiology , Arthropod Antennae/radiation effects , Butterflies/genetics , Butterflies/radiation effects , Cryptochromes/genetics , Eye/radiation effects , Humans , Insect Proteins/genetics , Light , Mutation , Orientation/radiation effects , Sensation/genetics , Sensation/radiation effects , Sequence Homology, Amino Acid
12.
Proc Biol Sci ; 288(1945): 20202988, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33622121

ABSTRACT

Every autumn, monarch butterflies migrate from North America to their overwintering sites in Central Mexico. To maintain their southward direction, these butterflies rely on celestial cues as orientation references. The position of the sun combined with additional skylight cues are integrated in the central complex, a region in the butterfly's brain that acts as an internal compass. However, the central complex does not solely guide the butterflies on their migration but also helps monarchs in their non-migratory form manoeuvre on foraging trips through their habitat. By comparing the activity of input neurons of the central complex between migratory and non-migratory butterflies, we investigated how a different lifestyle affects the coding of orientation information in the brain. During recording, we presented the animals with different simulated celestial cues and found that the encoding of the sun was narrower in migratory compared to non-migratory butterflies. This feature might reflect the need of the migratory monarchs to rely on a precise sun compass to keep their direction during their journey. Taken together, our study sheds light on the neural coding of celestial cues and provides insights into how a compass is adapted in migratory animals to successfully steer them to their destination.


Subject(s)
Butterflies , Animal Migration , Animals , Mexico , Neurons , North America
13.
Trends Genet ; 36(9): 689-701, 2020 09.
Article in English | MEDLINE | ID: mdl-32713598

ABSTRACT

The genetic architecture and neurogenetics of animal migration remain poorly understood. With a sequenced genome and the establishment of reverse genetic tools, the monarch butterfly has emerged as a promising model to uncover the genetic basis of migratory behavior and associated traits. Here, we synthesize major advances made in the genetics of monarch migration, which includes the discovery of genomic regions associated with migration and molecular mechanisms underpinning its seasonality. We highlight the catalytic role that a rapidly growing number of contemporary genetic and molecular technologies applicable to nonconventional organisms have had in these discoveries, and outline new avenues of investigation to continue moving the field forward.


Subject(s)
Animal Migration/physiology , Butterflies/genetics , Genome, Insect , Genomics/methods , Insect Proteins/genetics , Animals , Butterflies/physiology , Phenotype
14.
Proc Natl Acad Sci U S A ; 116(50): 25214-25221, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31767753

ABSTRACT

Seasonal adaptation to changes in light:dark regimes (i.e., photoperiod) allows organisms living at temperate latitudes to anticipate environmental changes. In nearly all animals studied so far, the circadian system has been implicated in measurement and response to the photoperiod. In insects, genetic evidence further supports the involvement of several clock genes in photoperiodic responses. Yet, the key molecular pathways linking clock genes or the circadian clock to insect photoperiodic responses remain largely unknown. Here, we show that inactivating the clock in the North American monarch butterfly using loss-of-function mutants for the circadian activators CLOCK and BMAL1 and the circadian repressor CRYPTOCHROME 2 abolishes photoperiodic responses in reproductive output. Transcriptomic approaches in the brain of monarchs raised in long and short photoperiods, summer monarchs, and fall migrants revealed a molecular signature of seasonal-specific rhythmic gene expression that included several genes belonging to the vitamin A pathway. We found that the rhythmic expression of these genes was abolished in clock-deficient mutants, suggesting that the vitamin A pathway operates downstream of the circadian clock. Importantly, we showed that a CRISPR/Cas9-mediated loss-of-function mutation in the gene encoding the pathway's rate-limiting enzyme, ninaB1, abolished photoperiod responsiveness independently of visual function in the compound eye and without affecting circadian rhythms. Together, these results provide genetic evidence that the clock-controlled vitamin A pathway mediates photoperiod responsiveness in an insect. Given previously reported seasonal changes associated with this pathway in the mammalian brain, our findings suggest an evolutionarily conserved function of vitamin A in animal photoperiodism.


Subject(s)
Brain/metabolism , Butterflies/physiology , Insect Proteins/metabolism , Period Circadian Proteins/metabolism , Photoperiod , Vitamin A/metabolism , Animals , Butterflies/genetics , Circadian Clocks , Insect Proteins/genetics , Period Circadian Proteins/genetics , Seasons
15.
PLoS Genet ; 15(7): e1008265, 2019 07.
Article in English | MEDLINE | ID: mdl-31335862

ABSTRACT

The Eastern North American monarch butterfly, Danaus plexippus, is famous for its spectacular seasonal long-distance migration. In recent years, it has also emerged as a novel system to study how animal circadian clocks keep track of time and regulate ecologically relevant daily rhythmic activities and seasonal behavioral outputs. However, unlike in Drosophila and the mouse, little work has been undertaken in the monarch to identify rhythmic genes at the genome-wide level and elucidate the regulation of their diurnal expression. Here, we used RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC)-sequencing to profile the diurnal transcriptome, open chromatin regions, and transcription factor (TF) footprints in the brain of wild-type monarchs and of monarchs with impaired clock function, including Cryptochrome 2 (Cry2), Clock (Clk), and Cycle-like loss-of-function mutants. We identified 217 rhythmically expressed genes in the monarch brain; many of them were involved in the regulation of biological processes key to brain function, such as glucose metabolism and neurotransmission. Surprisingly, we found no significant time-of-day and genotype-dependent changes in chromatin accessibility in the brain. Instead, we found the existence of a temporal regulation of TF occupancy within open chromatin regions in the vicinity of rhythmic genes in the brains of wild-type monarchs, which is disrupted in clock deficient mutants. Together, this work identifies for the first time the rhythmic genes and modes of regulation by which diurnal transcription rhythms are regulated in the monarch brain. It also illustrates the power of ATAC-sequencing to profile genome-wide regulatory elements and TF binding in a non-model organism for which TF-specific antibodies are not yet available.


Subject(s)
Butterflies/genetics , Gene Expression Profiling/veterinary , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Animals , Brain/metabolism , Chromatin/genetics , Circadian Clocks , Circadian Rhythm , Gene Expression Regulation , Insect Proteins/genetics , Sequence Analysis, RNA/veterinary
16.
J Exp Biol ; 222(Pt Suppl 1)2019 02 06.
Article in English | MEDLINE | ID: mdl-30728238

ABSTRACT

Migration is a complex behavioural adaptation for survival that has evolved across the animal kingdom from invertebrates to mammals. In some taxa, closely related migratory species, or even populations of the same species, exhibit different migratory phenotypes, including timing and orientation of migration. In these species, a significant proportion of the phenotypic variance in migratory traits is genetic. In others, the migratory phenotype and direction is triggered by seasonal changes in the environment, suggesting an epigenetic control of their migration. The genes and epigenetic changes underpinning migratory behaviour remain largely unknown. The revolution in (epi)genomics and functional genomic tools holds great promise to rapidly move the field of migration genetics forward. Here, we review our current understanding of the genetic and epigenetic architecture of migratory traits, focusing on two emerging models: the European blackcap and the North American monarch butterfly. We also outline a vision of how technical advances and integrative approaches could be employed to identify and functionally validate candidate genes and cis-regulatory elements on these and other migratory species across both small and broad phylogenetic scales to significantly advance the field of genetics of animal migration.


Subject(s)
Animal Migration , Butterflies/physiology , Orientation, Spatial , Songbirds/physiology , Spatial Navigation , Animals , Butterflies/genetics , Epigenesis, Genetic , Songbirds/genetics
17.
Philos Trans R Soc Lond B Biol Sci ; 372(1734)2017 Nov 19.
Article in English | MEDLINE | ID: mdl-28993500

ABSTRACT

Seasonal change in daylength (photoperiod) is widely used by insects to regulate temporal patterns of development and behaviour, including the timing of diapause (dormancy) and migration. Flexibility of the photoperiodic response is critical for rapid shifts to new hosts, survival in the face of global climate change and to reproductive isolation. At the same time, the daily circadian clock is also essential for development, diapause and multiple behaviours, including correct flight orientation during long-distance migration. Although studied for decades, how these two critical biological timing mechanisms are integrated is poorly understood, in part because the core circadian clock genes are all transcription factors or regulators that are able to exert multiple effects throughout the genome. In this chapter, we discuss clocks in the wild from the perspective of diverse insect groups across eco-geographic contexts from the Antarctic to the tropical regions of Earth. Application of the expanding tool box of molecular techniques will lead us to distinguish universal from unique mechanisms underlying the evolution of circadian and photoperiodic timing, and their interaction across taxonomic and ecological contexts represented by insects.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.


Subject(s)
Circadian Clocks , Circadian Rhythm , Insecta/physiology , Photoperiod , Adaptation, Biological , Animals , Seasons
18.
Proc Natl Acad Sci U S A ; 114(36): E7516-E7525, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28831003

ABSTRACT

Circadian repression of CLOCK-BMAL1 by PERIOD and CRYPTOCHROME (CRY) in mammals lies at the core of the circadian timekeeping mechanism. CRY repression of CLOCK-BMAL1 and regulation of circadian period are proposed to rely primarily on competition for binding with coactivators on an α-helix located within the transactivation domain (TAD) of the BMAL1 C terminus. This model has, however, not been tested in vivo. Here, we applied CRISPR/Cas9-mediated mutagenesis in the monarch butterfly (Danaus plexippus), which possesses a vertebrate-like CRY (dpCRY2) and an ortholog of BMAL1, to show that insect CRY2 regulates circadian repression through TAD α-helix-dependent and -independent mechanisms. Monarch mutants lacking the BMAL1 C terminus including the TAD exhibited arrhythmic eclosion behavior. In contrast, mutants lacking the TAD α-helix but retaining the most distal C-terminal residues exhibited robust rhythms during the first day of constant darkness (DD1), albeit with a delayed peak of eclosion. Phase delay in this mutant on DD1 was exacerbated in the presence of a single functional allele of dpCry2, and rhythmicity was abolished in the absence of dpCRY2. Reporter assays in Drosophila S2 cells further revealed that dpCRY2 represses through two distinct mechanisms: a TAD-dependent mechanism that involves the dpBMAL1 TAD α-helix and dpCLK W328 and a TAD-independent mechanism involving dpCLK E333. Together, our results provide evidence for independent mechanisms of vertebrate-like CRY circadian regulation on the BMAL1 C terminus and the CLK PAS-B domain and demonstrate the importance of a BMAL1 TAD-independent mechanism for generating circadian rhythms in vivo.


Subject(s)
ARNTL Transcription Factors/genetics , Butterflies/genetics , CLOCK Proteins/genetics , Circadian Rhythm/genetics , Cryptochromes/genetics , Transcription, Genetic/genetics , Vertebrates/genetics , Amino Acid Sequence , Animals , Cells, Cultured , Drosophila/genetics , Drosophila Proteins/genetics , Mice , Period Circadian Proteins/genetics
19.
G3 (Bethesda) ; 6(4): 905-15, 2016 04 07.
Article in English | MEDLINE | ID: mdl-26837953

ABSTRACT

The eastern North American monarch butterfly, Danaus plexippus, is an emerging model system to study the neural, molecular, and genetic basis of animal long-distance migration and animal clockwork mechanisms. While genomic studies have provided new insight into migration-associated and circadian clock genes, the general lack of simple and versatile reverse-genetic methods has limited in vivo functional analysis of candidate genes in this species. Here, we report the establishment of highly efficient and heritable gene mutagenesis methods in the monarch butterfly using transcriptional activator-like effector nucleases (TALENs) and CRISPR-associated RNA-guided nuclease Cas9 (CRISPR/Cas9). Using two clock gene loci, cryptochrome 2 and clock (clk), as candidates, we show that both TALENs and CRISPR/Cas9 generate high-frequency nonhomologous end-joining (NHEJ)-mediated mutations at targeted sites (up to 100%), and that injecting fewer than 100 eggs is sufficient to recover mutant progeny and generate monarch knockout lines in about 3 months. Our study also genetically defines monarch CLK as an essential component of the transcriptional activation complex of the circadian clock. The methods presented should not only greatly accelerate functional analyses of many aspects of monarch biology, but are also anticipated to facilitate the development of these tools in other nontraditional insect species as well as the development of homology-directed knock-ins.


Subject(s)
CRISPR-Cas Systems , Gene Targeting , Genomics , Mutagenesis , Transcription Activator-Like Effector Nucleases/metabolism , Animals , Base Sequence , Cell Line , Chickens , Gene Order , Gene Targeting/methods , Genes, Reporter , Genetic Engineering , Genetic Vectors , Genomics/methods
20.
Annu Rev Entomol ; 61: 25-42, 2016.
Article in English | MEDLINE | ID: mdl-26473314

ABSTRACT

Studies of the migration of the eastern North American monarch butterfly (Danaus plexippus) have revealed mechanisms behind its navigation. The main orientation mechanism uses a time-compensated sun compass during both the migration south and the remigration north. Daylight cues, such as the sun itself and polarized light, are processed through both eyes and integrated through intricate circuitry in the brain's central complex, the presumed site of the sun compass. Monarch circadian clocks have a distinct molecular mechanism, and those that reside in the antennae provide time compensation. Recent evidence shows that migrants can also use a light-dependent inclination magnetic compass for orientation in the absence of directional daylight cues. The monarch genome has been sequenced, and genetic strategies using nuclease-based technologies have been developed to edit specific genes. The monarch butterfly has emerged as a model system to study the neural, molecular, and genetic basis of long-distance animal migration.


Subject(s)
Animal Migration , Butterflies/physiology , Orientation , Animals , Brain/physiology , Butterflies/genetics , Genome, Insect
SELECTION OF CITATIONS
SEARCH DETAIL
...