Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38712152

ABSTRACT

Cancer progression is an evolutionary process driven by the selection of cells adapted to gain growth advantage. We present the first formal study on the adaptation of gene expression in subclonal evolution. We model evolutionary changes in gene expression as stochastic Ornstein-Uhlenbeck processes, jointly leveraging the evolutionary history of subclones and single-cell expression data. Applying our model to sublines derived from single cells of a mouse melanoma revealed that sublines with distinct phenotypes are underlined by different patterns of gene expression adaptation, indicating non-genetic mechanisms of cancer evolution. Interestingly, sublines previously observed to be resistant to anti-CTLA-4 treatment showed adaptive expression of genes related to invasion and non-canonical Wnt signaling, whereas sublines that responded to treatment showed adaptive expression of genes related to proliferation and canonical Wnt signaling. Our results suggest that clonal phenotypes emerge as the result of specific adaptivity patterns of gene expression.

2.
Int J Mol Sci ; 25(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732242

ABSTRACT

Melanoma is the most severe and fatal form of skin cancer, resulting from multiple gene mutations with high intra-tumor and inter-tumor molecular heterogeneity. Treatment options for patients whose disease has progressed beyond the ability for surgical resection rely on currently accepted standard therapies, notably immune checkpoint inhibitors and targeted therapies. Acquired resistance to these therapies and treatment-associated toxicity necessitate exploring novel strategies, especially those that can be personalized for specific patients and/or populations. Here, we review the current landscape and progress of standard therapies and explore what personalized oncology techniques may entail in the scope of melanoma. Our purpose is to provide an up-to-date summary of the tools at our disposal that work to circumvent the common barriers faced when battling melanoma.


Subject(s)
Melanoma , Precision Medicine , Skin Neoplasms , Humans , Melanoma/genetics , Melanoma/therapy , Melanoma/pathology , Precision Medicine/methods , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Molecular Targeted Therapy/methods , Immune Checkpoint Inhibitors/therapeutic use , Mutation
3.
Cells ; 12(23)2023 11 30.
Article in English | MEDLINE | ID: mdl-38067178

ABSTRACT

Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.


Subject(s)
Melanoma , Neoplasms, Second Primary , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/metabolism , Melanoma/drug therapy , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural , Cell- and Tissue-Based Therapy
4.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37333132

ABSTRACT

Intratumoral heterogeneity (ITH) can promote cancer progression and treatment failure, but the complexity of the regulatory programs and contextual factors involved complicates its study. To understand the specific contribution of ITH to immune checkpoint blockade (ICB) response, we generated single cell-derived clonal sublines from an ICB-sensitive and genetically and phenotypically heterogeneous mouse melanoma model, M4. Genomic and single cell transcriptomic analyses uncovered the diversity of the sublines and evidenced their plasticity. Moreover, a wide range of tumor growth kinetics were observed in vivo , in part associated with mutational profiles and dependent on T cell-response. Further inquiry into melanoma differentiation states and tumor microenvironment (TME) subtypes of untreated tumors from the clonal sublines demonstrated correlations between highly inflamed and differentiated phenotypes with the response to anti-CTLA-4 treatment. Our results demonstrate that M4 sublines generate intratumoral heterogeneity at both levels of intrinsic differentiation status and extrinsic TME profiles, thereby impacting tumor evolution during therapeutic treatment. These clonal sublines proved to be a valuable resource to study the complex determinants of response to ICB, and specifically the role of melanoma plasticity in immune evasion mechanisms.

5.
Pharmacol Ther ; 248: 108466, 2023 08.
Article in English | MEDLINE | ID: mdl-37301330

ABSTRACT

Melanoma, the cancer of the melanocyte, is the deadliest form of skin cancer with an aggressive nature, propensity to metastasize and tendency to resist therapeutic intervention. Studies have identified that the re-emergence of developmental pathways in melanoma contributes to melanoma onset, plasticity, and therapeutic response. Notably, it is well known that noncoding RNAs play a critical role in the development and stress response of tissues. In this review, we focus on the noncoding RNAs, including microRNAs, long non-coding RNAs, circular RNAs, and other small RNAs, for their functions in developmental mechanisms and plasticity, which drive onset, progression, therapeutic response and resistance in melanoma. Going forward, elucidation of noncoding RNA-mediated mechanisms may provide insights that accelerate development of novel melanoma therapies.


Subject(s)
Melanoma , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Untranslated/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Melanoma/drug therapy , Melanoma/genetics , RNA, Long Noncoding/genetics , RNA, Circular
6.
STAR Protoc ; 4(3): 102349, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37314923

ABSTRACT

Metastasis, a complex process, is responsible for most deaths in patients with cancer. Clinically relevant research models are indispensable to advancing our understanding of metastatic mechanisms and developing new treatments. We here describe detailed protocols to establish mouse models for melanoma metastasis using the single-cell imaging system and orthotropic footpad injection. The single-cell imaging system permits the tracking and quantification of early metastatic cell survival, while the orthotropic footpad transplantation mimics aspects of the complex metastatic process. For complete details on the use and execution of this protocol, please refer to Yu et al.1,2.


Subject(s)
Melanoma , Mice , Animals , Humans , Melanoma/diagnostic imaging , Melanoma/pathology , Neoplasm Transplantation , Disease Models, Animal
7.
Cells ; 12(12)2023 06 14.
Article in English | MEDLINE | ID: mdl-37371090

ABSTRACT

Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.


Subject(s)
Cell Adhesion , Cytoskeletal Proteins , Cytoskeleton , Neoplasm Metastasis , Cell Adhesion/genetics , Cell Adhesion/physiology , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Neoplasm Metastasis/genetics , Neoplasm Metastasis/physiopathology
8.
Nat Commun ; 14(1): 2744, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173324

ABSTRACT

With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Germ Cells , Germ-Line Mutation , Inhibition, Psychological , Macrophages , Tumor Microenvironment/genetics , Neoplasms/genetics , Neoplasms/therapy
9.
iScience ; 26(2): 106070, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824269

ABSTRACT

PTEN encodes a tumor suppressor with lipid and protein phosphatase activities whose dysfunction has been implicated in melanomagenesis; less is known about how its phosphatases regulate melanoma metastasis. We demonstrate that PTEN expression negatively correlates with metastatic progression in human melanoma samples and a PTEN-deficient mouse melanoma model. Wildtype PTEN expression inhibited melanoma cell invasiveness and metastasis in a dose-dependent manner, behaviors that specifically required PTEN protein phosphatase activity. PTEN phosphatase activity regulated metastasis through Entpd5. Entpd5 knockdown reduced metastasis and IGF1R levels while promoting ER stress. In contrast, Entpd5 overexpression promoted metastasis and enhanced IGF1R levels while reducing ER stress. Moreover, Entpd5 expression was regulated by the ER stress sensor ATF6. Altogether, our data indicate that PTEN phosphatase activity inhibits metastasis by negatively regulating the Entpd5/IGF1R pathway through ATF6, thereby identifying novel candidate therapeutic targets for the treatment of PTEN mutant melanoma.

10.
Dev Cell ; 57(21): 2447-2449, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36347238

ABSTRACT

Melanoma evolution may recapitulate the embryonic development of its progenitor tissue, neural crest (NC), but the exact process is unclear. In a recent issue of Nature, Karras et al. (2022) demonstrate that melanoma expansion mirrors the hierarchic process of NC differentiation, generating cell subpopulations, each with distinct function, including growth and metastasis.


Subject(s)
Melanoma , Humans , Cell Differentiation , Neural Crest , Organogenesis
11.
Pigment Cell Melanoma Res ; 35(6): 554-572, 2022 11.
Article in English | MEDLINE | ID: mdl-35912544

ABSTRACT

Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.


Subject(s)
Brain Neoplasms , Melanoma , Neoplasms, Second Primary , Humans , Ecosystem , Melanoma/pathology , Brain Neoplasms/therapy , Brain Neoplasms/secondary , Immunotherapy/methods , Neoplasms, Second Primary/pathology , Brain , Tumor Microenvironment
13.
Cancers (Basel) ; 14(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35954330

ABSTRACT

PTEN is the second most highly mutated tumor suppressor in cancer, following only p53. The PTEN protein functions as a phosphatase with lipid- and protein-phosphatase activity. PTEN-lipid-phosphatase activity dephosphorylates PIP3 to form PIP2, and it then antagonizes PI3K and blocks the activation of AKT, while its protein-phosphatase activity dephosphorylates different protein substrates and plays various roles in tumorigenesis. Here, we review the PTEN mutations and protein-phosphatase substrates in tumorigenesis and metastasis. Our purpose is to clarify how PTEN protein phosphatase contributes to its tumor-suppressive functions through PI3K-independent activities.

14.
Trends Cancer ; 8(8): 626-628, 2022 08.
Article in English | MEDLINE | ID: mdl-35718707

ABSTRACT

Patients with congenital giant nevi (CGN), which can compromise quality of life and progress to melanoma, have limited treatment options. Choi et al. have demonstrated that topical application of a proinflammatory hapten for alopecia treatment [squaric acid dibutylester (SADBE)] caused nevus regression and prevented melanoma in an Nras mouse CGN model. Their results demonstrate the promise of repurposing drugs through precision modeling.


Subject(s)
Alopecia Areata , Melanoma , Nevus, Pigmented , Alopecia Areata/drug therapy , Humans , Quality of Life , Skin Neoplasms
15.
Nat Med ; 28(7): 1421-1431, 2022 07.
Article in English | MEDLINE | ID: mdl-35501486

ABSTRACT

Despite breakthroughs in cancer immunotherapy, most tumor-reactive T cells cannot persist in solid tumors due to an immunosuppressive environment. We developed Tres (tumor-resilient T cell), a computational model utilizing single-cell transcriptomic data to identify signatures of T cells that are resilient to immunosuppressive signals, such as transforming growth factor-ß1, tumor necrosis factor-related apoptosis-inducing ligand and prostaglandin E2. Tres reliably predicts clinical responses to immunotherapy in melanoma, lung cancer, triple-negative breast cancer and B cell malignancies using bulk T cell transcriptomic data from pre-treatment tumors from patients who received immune-checkpoint inhibitors (n = 38), infusion products for chimeric antigen receptor T cell therapies (n = 34) and pre-manufacture samples for chimeric antigen receptor T cell or tumor-infiltrating lymphocyte therapies (n = 84). Further, Tres identified FIBP, whose functions are largely unknown, as the top negative marker of tumor-resilient T cells across many solid tumor types. FIBP knockouts in murine and human donor CD8+ T cells significantly enhanced T cell-mediated cancer killing in in vitro co-cultures. Further, Fibp knockout in murine T cells potentiated the in vivo efficacy of adoptive cell transfer in the B16 tumor model. Fibp knockout T cells exhibit reduced cholesterol metabolism, which inhibits effector T cell function. These results demonstrate the utility of Tres in identifying biomarkers of T cell effectiveness and potential therapeutic targets for immunotherapies in solid tumors.


Subject(s)
Melanoma , Receptors, Chimeric Antigen , Animals , CD8-Positive T-Lymphocytes , Carrier Proteins , Humans , Immunotherapy/methods , Immunotherapy, Adoptive/methods , Membrane Proteins , Mice
16.
Mol Ther Oncolytics ; 24: 849-863, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35317524

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy shows excellent potency against hematological malignancies, but it remains challenging to treat solid tumors, mainly because of a lack of appropriate antigenic targets and an immunosuppressive tumor microenvironment (TME). The checkpoint molecule programmed death-ligand 1 (PD-L1) is widely overexpressed in multiple tumor types, and the programmed death-ligand 1 (PD-1)/PD-L1 interaction is a crucial mediator of immunosuppression in the TME. Here we constructed a semi-synthetic shark VNAR phage library and isolated anti-PD-L1 single-domain antibodies. Among these VNARs, B2 showed cross-reactivity to human, mouse, and canine PD-L1, and it partially blocked the interaction of human PD-1 with PD-L1. CAR (B2) T cells specifically lysed human breast cancer and liver cancer cells by targeting constitutive and inducible expression of PD-L1 and hindered tumor metastasis. Combination of PD-L1 CAR (B2) T cells with CAR T cells targeted by GPC3 (a liver cancer-specific antigen) regresses liver tumors in mice. We concluded that PD-L1-targeted shark VNAR single-domain-based CAR-T therapy is a novel strategy to treat breast and liver cancer. This study provides a rationale for potential use of PD-L1 CAR-T cells as a monotherapy or in combination with a tumor-specific therapy in clinical studies.

18.
Nat Comput Sci ; 2(9): 577-583, 2022 Sep.
Article in English | MEDLINE | ID: mdl-38177468

ABSTRACT

We introduce HUNTRESS, a computational method for mutational intratumor heterogeneity inference from noisy genotype matrices derived from single-cell sequencing data, the running time of which is linear with the number of cells and quadratic with the number of mutations. We prove that, under reasonable conditions, HUNTRESS computes the true progression history of a tumor with high probability. On simulated and real tumor sequencing data, HUNTRESS is demonstrated to be faster than available alternatives with comparable or better accuracy. Additionally, the progression histories of tumors inferred by HUNTRESS on real single-cell sequencing datasets agree with the best known evolution scenarios for the associated tumors.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Sequence Analysis , Mutation
19.
Science ; 374(6575): 1632-1640, 2021 Dec 24.
Article in English | MEDLINE | ID: mdl-34941392

ABSTRACT

Gut bacteria modulate the response to immune checkpoint blockade (ICB) treatment in cancer, but the effect of diet and supplements on this interaction is not well studied. We assessed fecal microbiota profiles, dietary habits, and commercially available probiotic supplement use in melanoma patients and performed parallel preclinical studies. Higher dietary fiber was associated with significantly improved progression-free survival in 128 patients on ICB, with the most pronounced benefit observed in patients with sufficient dietary fiber intake and no probiotic use. Findings were recapitulated in preclinical models, which demonstrated impaired treatment response to anti­programmed cell death 1 (anti­PD-1)­based therapy in mice receiving a low-fiber diet or probiotics, with a lower frequency of interferon-γ­positive cytotoxic T cells in the tumor microenvironment. Together, these data have clinical implications for patients receiving ICB for cancer.


Subject(s)
Dietary Fiber , Gastrointestinal Microbiome , Immune Checkpoint Inhibitors/therapeutic use , Melanoma/therapy , Probiotics , Animals , Cohort Studies , Fatty Acids, Volatile/analysis , Fecal Microbiota Transplantation , Feces/chemistry , Feces/microbiology , Female , Humans , Immunotherapy , Male , Melanoma/immunology , Melanoma/microbiology , Melanoma, Experimental/immunology , Melanoma, Experimental/microbiology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Progression-Free Survival , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...