Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 20(2): e1011299, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306404

ABSTRACT

Onco-hematological studies are increasingly adopting statistical mixture models to support the advancement of the genomically-driven classification systems for blood cancer. Targeting enhanced patients stratification based on the sole role of molecular biology attracted much interest and contributes to bring personalized medicine closer to reality. In onco-hematology, Hierarchical Dirichlet Mixture Models (HDMM) have become one of the preferred method to cluster the genomics data, that include the presence or absence of gene mutations and cytogenetics anomalies, into components. This work unfolds the standard workflow used in onco-hematology to improve patient stratification and proposes alternative approaches to characterize the components and to assign patient to them, as they are crucial tasks usually supported by a priori clinical knowledge. We propose (a) to compute the parameters of the multinomial components of the HDMM or (b) to estimate the parameters of the HDMM components as if they were Multivariate Fisher's Non-Central Hypergeometric (MFNCH) distributions. Then, our approach to perform patients assignments to the HDMM components is designed to essentially determine for each patient its most likely component. We show on simulated data that the patients assignment using the MFNCH-based approach can be superior, if not comparable, to using the multinomial-based approach. Lastly, we illustrate on real Acute Myeloid Leukemia data how the utilization of MFNCH-based approach emerges as a good trade-off between the rigorous multinomial-based characterization of the HDMM components and the common refinement of them based on a priori clinical knowledge.


Subject(s)
Hematology , Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Genomics , Chromosome Aberrations
2.
Animals (Basel) ; 13(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627381

ABSTRACT

The aim of the present study was to investigate the genetic diversity and antimicrobial resistance (AMR) of E. coli during enrofloxacin therapy in broilers affected by colisepticemia. Three unrelated farms with ongoing colibacillosis outbreaks were sampled at day 1 before treatment and at days 5, 10 and 24 post-treatment. A total of 179 E. coli isolates were collected from extraintestinal organs and submitted to serotyping, PFGE and the minimum inhibitory concentration (MIC) against enrofloxacin. PFGE clusters shifted from 3-6 at D1 to 10-16 at D5, D10 and D24, suggesting an increased population diversity after the treatment. The majority of strains belonged to NT or O78 and to ST117 or ST23. PFGE results were confirmed with SNP calling: no persistent isolates were identified. An increase in resistance to fluoroquinolones in E. coli isolates was observed along the treatment. Resistome analyses revealed qnrB19 and qnrS1 genes along with mutations in the gyrA, parC and parE genes. Interestingly, despite a fluoroquinolone selective pressure, qnr-carrying plasmids did not persist. On the contrary, two conjugative AMR plasmid clusters (AB233 and AA474) harboring AMR genes other than qnr were persistent since they were identified in both D1 and D10 genomes in two farms. Further studies should be performed in order to confirm plasmid persistence not associated (in vivo) to antimicrobial selective pressure.

3.
Pathogens ; 12(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37375476

ABSTRACT

Campylobacter spp. are the most common cause of bacterial gastrointestinal infection in humans both in Denmark and worldwide. Studies have found microbial subtyping to be a powerful tool for source attribution, but comparisons of different methodologies are limited. In this study, we compare three source attribution approaches (Machine Learning, Network Analysis, and Bayesian modeling) using three types of whole genome sequences (WGS) data inputs (cgMLST, 5-Mers and 7-Mers). We predicted and compared the sources of human campylobacteriosis cases in Denmark. Using 7mer as an input feature provided the best model performance. The network analysis algorithm had a CSC value of 78.99% and an F1-score value of 67%, while the machine-learning algorithm showed the highest accuracy (98%). The models attributed between 965 and all of the 1224 human cases to a source (network applying 5mer and machine learning applying 7mer, respectively). Chicken from Denmark was the primary source of human campylobacteriosis with an average percentage probability of attribution of 45.8% to 65.4%, representing Bayesian with 7mer and machine learning with cgMLST, respectively. Our results indicate that the different source attribution methodologies based on WGS have great potential for the surveillance and source tracking of Campylobacter. The results of such models may support decision makers to prioritize and target interventions.

4.
J Pers Med ; 13(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36983660

ABSTRACT

BACKGROUND: Benign renal tumors, such as renal oncocytoma (RO), can be erroneously diagnosed as malignant renal cell carcinomas (RCC), because of their similar imaging features. Computer-aided systems leveraging radiomic features can be used to better discriminate benign renal tumors from the malignant ones. The purpose of this work was to build a machine learning model to distinguish RO from clear cell RCC (ccRCC). METHOD: We collected CT images of 77 patients, with 30 cases of RO (39%) and 47 cases of ccRCC (61%). Radiomic features were extracted both from the tumor volumes identified by the clinicians and from the tumor's zone of transition (ZOT). We used a genetic algorithm to perform feature selection, identifying the most descriptive set of features for the tumor classification. We built a decision tree classifier to distinguish between ROs and ccRCCs. We proposed two versions of the pipeline: in the first one, the feature selection was performed before the splitting of the data, while in the second one, the feature selection was performed after, i.e., on the training data only. We evaluated the efficiency of the two pipelines in cancer classification. RESULTS: The ZOT features were found to be the most predictive by the genetic algorithm. The pipeline with the feature selection performed on the whole dataset obtained an average ROC AUC score of 0.87 ± 0.09. The second pipeline, in which the feature selection was performed on the training data only, obtained an average ROC AUC score of 0.62 ± 0.17. CONCLUSIONS: The obtained results confirm the efficiency of ZOT radiomic features in capturing the renal tumor characteristics. We showed that there is a significant difference in the performances of the two proposed pipelines, highlighting how some already published radiomic analyses could be too optimistic about the real generalization capabilities of the models.

5.
Sci Rep ; 12(1): 16595, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36198716

ABSTRACT

The ability to detect and characterize bacteria within a biological sample is crucial for the monitoring of infections and epidemics, as well as for the study of human health and its relationship with commensal microorganisms. To this aim, a commonly used technique is the 16S rRNA gene targeted sequencing. PCR-amplified 16S sequences derived from the sample of interest are usually clustered into the so-called Operational Taxonomic Units (OTUs) based on pairwise similarities. Then, representative OTU sequences are compared with reference (human-made) databases to derive their phylogeny and taxonomic classification. Here, we propose a new reference-free approach to define the phylogenetic distance between bacteria based on protein domains, which are the evolving units of proteins. We extract the protein domain profiles of 3368 bacterial genomes and we use an ecological approach to model their Relative Species Abundance distribution. Based on the model parameters, we then derive a new measurement of phylogenetic distance. Finally, we show that such model-based distance is capable of detecting differences between bacteria in cases in which the 16S rRNA-based method fails, providing a possibly complementary approach , which is particularly promising for the analysis of bacterial populations measured by shotgun sequencing.


Subject(s)
Bacteria , Bacteria/genetics , Humans , Phylogeny , Protein Domains , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
6.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293315

ABSTRACT

DNA microarrays and RNA-based sequencing approaches are considered important discovery tools in clinical medicine. However, cross-platform reproducibility studies undertaken so far have highlighted that microarrays are not able to accurately measure gene expression, particularly when they are expressed at low levels. Here, we consider the employment of a digital PCR assay (ddPCR) to validate a gene signature previously identified by gene expression profile. This signature included ten Hedgehog (HH) pathways' genes able to stratify multiple myeloma (MM) patients according to their self-renewal status. Results show that the designed assay is able to validate gene expression data, both in a retrospective as well as in a prospective cohort. In addition, the plasma cells' differentiation status determined by ddPCR was further confirmed by other techniques, such as flow cytometry, allowing the identification of patients with immature plasma cells' phenotype (i.e., expressing CD19+/CD81+ markers) upregulating HH genes, as compared to others, whose plasma cells lose the expression of these markers and were more differentiated. To our knowledge, this is the first technical report of gene expression data validation by ddPCR instead of classical qPCR. This approach permitted the identification of a Maturation Index through the integration of molecular and phenotypic data, able to possibly define upfront the differentiation status of MM patients that would be clinically relevant in the future.


Subject(s)
Multiple Myeloma , Plasma Cells , Humans , Plasma Cells/metabolism , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Transcriptome , Hedgehog Proteins/metabolism , Retrospective Studies , Reproducibility of Results , Prospective Studies , Real-Time Polymerase Chain Reaction/methods , RNA/metabolism
7.
Pathogens ; 11(6)2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35745499

ABSTRACT

Campylobacter spp. are a leading and increasing cause of gastrointestinal infections worldwide. Source attribution, which apportions human infection cases to different animal species and food reservoirs, has been instrumental in control- and evidence-based intervention efforts. The rapid increase in whole-genome sequencing data provides an opportunity for higher-resolution source attribution models. Important challenges, including the high dimension and complex structure of WGS data, have inspired concerted research efforts to develop new models. We propose network analysis models as an accurate, high-resolution source attribution approach for the sources of human campylobacteriosis. A weighted network analysis approach was used in this study for source attribution comparing different WGS data inputs. The compared model inputs consisted of cgMLST and wgMLST distance matrices from 717 human and 717 animal isolates from cattle, chickens, dogs, ducks, pigs and turkeys. SNP distance matrices from 720 human and 720 animal isolates were also used. The data were collected from 2015 to 2017 in Denmark, with the animal sources consisting of domestic and imports from 7 European countries. Clusters consisted of network nodes representing respective genomes and links representing distances between genomes. Based on the results, animal sources were the main driving factor for cluster formation, followed by type of species and sampling year. The coherence source clustering (CSC) values based on animal sources were 78%, 81% and 78% for cgMLST, wgMLST and SNP, respectively. The CSC values based on Campylobacter species were 78%, 79% and 69% for cgMLST, wgMLST and SNP, respectively. Including human isolates in the network resulted in 88%, 77% and 88% of the total human isolates being clustered with the different animal sources for cgMLST, wgMLST and SNP, respectively. Between 12% and 23% of human isolates were not attributed to any animal source. Most of the human genomes were attributed to chickens from Denmark, with an average attribution percentage of 52.8%, 52.2% and 51.2% for cgMLST, wgMLST and SNP distance matrices respectively, while ducks from Denmark showed the least attribution of 0% for all three distance matrices. The best-performing model was the one using wgMLST distance matrix as input data, which had a CSC value of 81%. Results from our study show that the weighted network-based approach for source attribution is reliable and can be used as an alternative method for source attribution considering the high performance of the model. The model is also robust across the different Campylobacter species, animal sources and WGS data types used as input.

8.
Cancers (Basel) ; 14(9)2022 04 29.
Article in English | MEDLINE | ID: mdl-35565360

ABSTRACT

BACKGROUND: Rectal cancer is a malignant neoplasm of the large intestine resulting from the uncontrolled proliferation of the rectal tract. Predicting the pathologic response of neoadjuvant chemoradiotherapy at an MRI primary staging scan in patients affected by locally advanced rectal cancer (LARC) could lead to significant improvement in the survival and quality of life of the patients. In this study, the possibility of automatizing this estimation from a primary staging MRI scan, using a fully automated artificial intelligence-based model for the segmentation and consequent characterization of the tumor areas using radiomic features was evaluated. The TRG score was used to evaluate the clinical outcome. METHODS: Forty-three patients under treatment in the IRCCS Sant'Orsola-Malpighi Polyclinic were retrospectively selected for the study; a U-Net model was trained for the automated segmentation of the tumor areas; the radiomic features were collected and used to predict the tumor regression grade (TRG) score. RESULTS: The segmentation of tumor areas outperformed the state-of-the-art results in terms of the Dice score coefficient or was comparable to them but with the advantage of considering mucinous cases. Analysis of the radiomic features extracted from the lesion areas allowed us to predict the TRG score, with the results agreeing with the state-of-the-art results. CONCLUSIONS: The results obtained regarding TRG prediction using the proposed fully automated pipeline prove its possible usage as a viable decision support system for radiologists in clinical practice.

9.
Int J Mol Sci ; 24(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36614147

ABSTRACT

Appropriate wound management shortens the healing times and reduces the management costs, benefiting the patient in physical terms and potentially reducing the healthcare system's economic burden. Among the instrumental measurement methods, the image analysis of a wound area is becoming one of the cornerstones of chronic ulcer management. Our study aim is to develop a solid AI method based on a convolutional neural network to segment the wounds efficiently to make the work of the physician more efficient, and subsequently, to lay the foundations for the further development of more in-depth analyses of ulcer characteristics. In this work, we introduce a fully automated model for identifying and segmenting wound areas which can completely automatize the clinical wound severity assessment starting from images acquired from smartphones. This method is based on an active semi-supervised learning training of a convolutional neural network model. In our work, we tested the robustness of our method against a wide range of natural images acquired in different light conditions and image expositions. We collected the images using an ad hoc developed app and saved them in a database which we then used for AI training. We then tested different CNN architectures to develop a balanced model, which we finally validated with a public dataset. We used a dataset of images acquired during clinical practice and built an annotated wound image dataset consisting of 1564 ulcer images from 474 patients. Only a small part of this large amount of data was manually annotated by experts (ground truth). A multi-step, active, semi-supervised training procedure was applied to improve the segmentation performances of the model. The developed training strategy mimics a continuous learning approach and provides a viable alternative for further medical applications. We tested the efficiency of our model against other public datasets, proving its robustness. The efficiency of the transfer learning showed that after less than 50 epochs, the model achieved a stable DSC that was greater than 0.95. The proposed active semi-supervised learning strategy could allow us to obtain an efficient segmentation method, thereby facilitating the work of the clinician by reducing their working times to achieve the measurements. Finally, the robustness of our pipeline confirms its possible usage in clinical practice as a reliable decision support system for clinicians.


Subject(s)
Neural Networks, Computer , Ulcer , Humans , Image Processing, Computer-Assisted/methods , Supervised Machine Learning
10.
Adv Protein Chem Struct Biol ; 127: 217-248, 2021.
Article in English | MEDLINE | ID: mdl-34340768

ABSTRACT

Protein structure characterization is fundamental to understand protein properties, such as folding process and protein resistance to thermal stress, up to unveiling organism pathologies (e.g., prion disease). In this chapter, we provide an overview on how the spectral properties of the networks reconstructed from the Protein Contact Map (PCM) can be used to generate informative observables. As a specific case study, we apply two different network approaches to an example protein dataset, for the aim of discriminating protein folding state, and for the reconstruction of protein 3D structure.


Subject(s)
Databases, Protein , Protein Folding , Protein Interaction Maps , Proteins/chemistry , Proteins/metabolism , Animals , Humans , Protein Domains , Protein Stability
11.
Front Microbiol ; 11: 1205, 2020.
Article in English | MEDLINE | ID: mdl-34354676

ABSTRACT

Salmonella enterica subspecies enterica serovar Typhimurium and its monophasic variant are among the most common Salmonella serovars associated with human salmonellosis each year. Related infections are often due to consumption of contaminated meat of pig, cattle, and poultry origin. In order to evaluate novel microbial subtyping methods for source attribution, an approach based on weighted networks was applied on 141 human and 210 food and animal isolates of pigs, broilers, layers, ducks, and cattle collected in Denmark from 2013 to 2014. A whole-genome SNP calling was performed along with cgMLST and wgMLST. Based on these genomic input data, pairwise distance matrices were built and used as input for construction of a weighted network where nodes represent genomes and links to distances. Analyzing food and animal Typhimurium genomes, the coherence of source clustering ranged from 89 to 90% for animal source, from 84 to 85% for country, and from 63 to 65% for year of isolation and was equal to 82% for serotype, suggesting animal source as the first driver of clustering formation. Adding human isolate genomes to the network, a percentage between 93.6 and 97.2% clustered with the existing component and only a percentage between 2.8 and 6.4% appeared as not attributed to any animal sources. The majority of human genomes were attributed to pigs with probabilities ranging from 83.9 to 84.5%, followed by broilers, ducks, cattle, and layers in descending order. In conclusion, a weighted network approach based on pairwise SNPs, cgMLST, and wgMLST matrices showed promising results for source attribution studies.

12.
Biochim Biophys Acta Gene Regul Mech ; 1863(6): 194415, 2020 06.
Article in English | MEDLINE | ID: mdl-31672524

ABSTRACT

Genome organization in eukaryotes during interphase stems from the delicate balance between non-random correlations present in the DNA polynucleotide linear sequence and the physico/chemical reactions which shape continuously the form and structure of DNA and chromatin inside the nucleus of the cell. It is now clear that these mechanisms have a key role in important processes like gene regulation, yet the detailed ways they act simultaneously and, eventually, come to influence each other even across very different length-scales remain largely unexplored. In this paper, we recapitulate some of the main results concerning gene regulatory and physical mechanisms, in relation to the information encoded in the 1D sequence and the 3D folding structure of DNA. In particular, we stress how reciprocal crossfeeding between 1D and 3D models may provide original insight into how these complex processes work and influence each other. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.


Subject(s)
Chromosomes , Genomics/methods , Models, Genetic , Base Sequence , Chromatin/chemistry , DNA/chemistry , Eukaryota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...