ABSTRACT
Combretastatin A-4 (CA-4, 1) is an antimicrotubule agent used as a prototype for the design of several synthetic analogues with anti-tubulin activity, such as LASSBio-1586 (2). A series of branched and unbranched homologs of the lead-compound 2, and vinyl, ethinyl and benzyl analogues, were designed and synthesized. A comparison between the cytotoxic effect of these homologs and 2 on different human tumor cell lines was performed from a cell viability study using MTT with 48 h and 72 h incubations. In general, the compounds were less potent than CA-4, showing CC50 values ranging from 0.030 µM to 7.53 µM (MTT at 72 h) and 0.096 µM to 8.768 µM (MTT at 48 h). The antimitotic effect of the target compounds was demonstrated by cell cycle analysis through flow cytometry, and the cellular mechanism of cytotoxicity was determined by immunofluorescence. While the benzyl homolog 10 (LASSBio-2070) was shown to be a microtubule stabilizer, the lead-compound 2 (LASSBio-1586) and the methylated homolog 3 (LASSBio-1735) had microtubule destabilizing behavior. Molecular docking studies were performed on tubulin protein to investigate their binding mode on colchicine and taxane domain. Surprisingly, the benzyl homolog 10 was able to modulate EGFR phosphorylate activity in a phenotypic model. These data suggest LASSBio-2070 (10) as a putative dual inhibitor of tubulin and EGFR. Its binding mode with EGFR was determined by molecular docking and may be useful in lead-optimization initiatives.
ABSTRACT
Olfactory ensheathing glia (OEG) are found in the olfactory mucosa, nerve and bulb, and provide in vivo ensheathment for the unmyelinated olfactory axons within the central and peripheral nervous system domains. OEG cells are able to migrate long distances within the neuropil of the central nervous system. Because gangliosides such as 9-O-acetyl GD3 have crucial regulatory roles in neuronal migration during development, we analyzed whether OEG in organotypical cultures are revealed by anti-9-O-acetyl GD3 and/or gangliosides are recognized by the A2B5 antibody (G-A2B5), and whether these gangliosides are involved in OEG migration. Our results showed that all OEG migrating out of a section of olfactory bulb onto a laminin substrate bound to the 9-O-acetyl GD3 and A2B5 antibodies, and that 2',3'-cyclic nucleotide phosphodiesterase (CNPase) colocalized with 9-O-acetyl GD3 and with G-A2B5. Additionally, we showed that the immune blockade of 9-O-acetyl GD3 or G-A2B5 reduced the migration of OEG on laminin, and that 9-O-acetyl GD3 and G-A2B5 colocalized with the ß1-integrin subunit. We also confirmed the phenotype of in-vitro-grown OEG cells derived from adult rats, showing that they express CNPase, and also α-smooth muscle actin, which is not expressed by Schwann cells. Our data showed that the gangliosides 9-O-acetyl GD3 and G-A2B5 participate in the migratory activity of OEG cells, and that the ß1-integrin subunit colocalizes with these gangliosides. These results suggest a new role for ß1-integrin and gangliosides in the polarized migration of OEG cells, and provide new information on the molecules controlling OEG motility and behavior.
Subject(s)
Cell Movement/physiology , Gangliosides/metabolism , Integrin beta1/metabolism , Neuroglia/metabolism , Olfactory Bulb/metabolism , Animals , Neuroglia/cytology , Olfactory Bulb/cytology , Olfactory Mucosa/cytology , Olfactory Mucosa/metabolism , Rats , Rats, Wistar , Schwann Cells/cytology , Schwann Cells/metabolismABSTRACT
In this study, we synthesized a new congener series of N-sulphonylhydrazones designed as candidate ROCK inhibitors using the molecular hybridization of the clinically approved drug fasudil (1) and the IKK-ß inhibitor LASSBio-1524 (2). Among the synthesized compounds, the N-methylated derivative 11 (LASSBio-2065) showed the best inhibitory profile for both ROCK isoforms, with IC50 values of 3.1 and 3.8 µM for ROCK1 and ROCK2, respectively. Moreover, these compounds were also active in the scratch assay performed in human breast cancer MDA-MB 231 cells and did not display toxicity in MTT and LDH assays. Molecular modelling studies provided insights into the possible binding modes of these N-sulphonylhydrazones, which present a new molecular architecture capable of being optimized and developed as therapeutically useful ROCK inhibitors.
Subject(s)
Hydrazones/chemistry , Isoquinolines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/chemistry , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Cell Line, Tumor , Female , Humans , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Models, Molecular , Powder Diffraction , Spectrum Analysis/methodsABSTRACT
Tumor aggressiveness is usually associated with metastasis. MDA-MB 231, a triple-negative breast cancer (TNBC), is an aggressive type of breast cancer and associated with early metastasis. The Rho/ROCK pathway is a key regulator of cell motility involving cytoskeleton regulation through stabilization of actin filaments and stress fiber formation. In this study we show that Fasudil, a ROCK inhibitor, inhibited the migration of MDA-MB 231 and A549 cells, without altering the viability of these cells at the concentration of 10 µM, modified tumor cell morphology, with disorganization of stress fibers and promotes activation of the canonical-Wnt/beta-catenin pathway. Therefore, Fasudil present a promising approach to the prevention of breast cancer metastasis through a different mechanism of action from the well-known one.
Subject(s)
1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/drug therapy , rho-Associated Kinases/antagonists & inhibitors , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Carcinoma/drug therapy , Carcinoma/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/physiology , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasm Metastasis/physiopathology , Neoplasm Metastasis/prevention & control , Protein Transport/drug effects , Protein Transport/physiology , Signal Transduction/drug effects , Stress Fibers/drug effects , Stress Fibers/metabolism , Stress Fibers/pathology , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology , beta Catenin/metabolism , rho-Associated Kinases/metabolismABSTRACT
The success of peripheral nerve regeneration depends on intrinsic properties of neurons and a favorable environment, although the mechanisms underlying the molecular events during degeneration and regeneration are still not elucidated. Schwann cells are considered one of the best candidates to be closely involved in the success of peripheral nerve regeneration. These cells and invading macrophages are responsible for clearing myelin and axon debris, creating an appropriate route for a successful regeneration. After injury, Schwann cells express galectin-3, and this has been correlated with phagocytosis; also, in the presence of galectin-3, there is inhibition of Schwann-cell proliferation in vitro. In the present study we explored, in vivo, the effects of the absence of galectin-3 on Wallerian degeneration and nerve-fiber regeneration. We crushed the sciatic nerves of galectin-3 knockout and wild-type mice, and followed the pattern of degeneration and regeneration from 24 h up to 3 weeks. We analyzed the number of myelinated fibers, axon area, fiber area, myelin area, G-ratio and immunofluorescence for beta-catenin, macrophages and Schwann cells in DAPI counterstained sections. Galectin-3 knockout mice showed earlier functional recovery and faster regeneration than the wild-type animals. We concluded that the absence of galectin-3 allowed faster regeneration, which may be associated with increased growth of Schwann cells and expression of beta-catenin. This would favor neuron survival, followed by faster myelination, culminating in a better morphological and functional outcome.
Subject(s)
Galectin 3/deficiency , Nerve Regeneration/genetics , Recovery of Function/genetics , Sciatic Neuropathy/physiopathology , Animals , Antigens, Differentiation/metabolism , Axons/pathology , Axons/physiology , Disease Models, Animal , Indoles , Locomotion/physiology , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Fibers, Myelinated/physiology , S100 Proteins/metabolism , Schwann Cells/pathology , Schwann Cells/physiology , Sciatic Neuropathy/pathology , Time Factors , beta Catenin/metabolismABSTRACT
The electric eel Electrophorus electricus is a fresh water teleost showing an electrogenic tissue that produces electric discharges. This electrogenic tissue is distributed in three well-defined electric organs which may be found symmetrically along both sides of the eel. These electric organs develop from muscle and exhibit several biochemical properties and morphological features of the muscle sarcolema. This review examines the contribution of the cytoskeletal meshwork to the maintenance of the polarized organization of the electrocyte, the cell that contains all electric properties of each electric organ. The cytoskeletal filaments display an important role in the establishment and maintenance of the highly specialized membrane model system of the electrocyte. As a muscular tissue, these electric organs expresses actin and desmin. The studies that characterized these cytoskeletal proteins and their implications on the electrophysiology of the electric tissues are revisited.