Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(5): 1103-1112, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31887046

ABSTRACT

Surface texturing is an easy way to control wettability as well as bacterial adhesion. Air trapped in the surface texture of an immersed sample was often proposed as the origin of the low adhesion of bacteria to surfaces showing superhydrophobic properties. In this work, we identified two sets of femtosecond laser processing parameters that led to extreme superhydrophobic textures on a silicone elastomer but showed opposite behavior against Staphylococcus aureus (S. aureus, ATCC 25923) over a short incubation times (6 h). The main difference from most of the previous studies was that the air trapping was not evaluated from the extrapolation of the results of the classical sessile drop technique but from the drop rebound and Wilhelmy plate method. Additionally, all wetting tests were performed with bacteria culture medium and at 37 °C in the case of the Wilhelmy plate method. Following this approach, we were able to study the formation of the liquid/silicone interface and the associated air trapping for immersed samples that is, by far, most representative of the cell culture conditions than those associated with the sessile drop technique. Finally, the conversion of these superhydrophobic coatings into superhydrophilic ones revealed that air trapping is not a necessary condition to avoid Staphylococcus aureus retention on one of these two textured surfaces at short incubation times.


Subject(s)
Air , Bacterial Adhesion/drug effects , Silicone Elastomers/chemistry , Staphylococcus aureus/drug effects , Hydrophobic and Hydrophilic Interactions , Lasers , Wettability
2.
Langmuir ; 32(31): 7765-73, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27408983

ABSTRACT

We have considered in this work the Wilhelmy plate tensiometer to characterize the wetting properties of two model surface textures: (i) a series of three superhydrophobic micropillared surfaces and (ii) a series of two highly water-repellent surfaces microtextured with a femtosecond laser. The wetting forces obtained on these surfaces with the Wilhelmy plate technique were compared to the contact angles of water droplets measured with the sessile drop technique and to the bouncing behavior of water droplets recorded at a high frame rate. We showed that it is possible with this technique to directly measure triple-line anchoring forces that are not accessible with the commonly used sessile drop technique. In addition, we have demonstrated on the basis of the bouncing drop experiments wetting transitions induced by the specific test conditions associated with the Wilhelmy plate tensiometer for the two series of textured surfaces. Finally, the tensiometer technique is proposed as an alternative test for characterizing the wetting properties of highly liquid-repellent surface, especially under immersion conditions.

3.
Opt Lett ; 41(9): 2073-6, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27128077

ABSTRACT

We demonstrate that photonic jets (PJs) can be obtained in the vicinity of a shaped optical fiber and that they can be used to achieve subwavelength etchings. Only 10% of the power of a 30 W, 100 ns, near-infrared (1064 nm) Nd:YAG laser, commonly used for industrial laser processing, has been required. Etchings on a silicon wafer with a lateral feature size close to half-laser wavelength have been achieved using a shaped-tip optical fiber. This breakthrough has been carried out in ambient air by using a multimode 100/140 µm silica fiber with a shaped tip that generates a concentrated beam at their vicinity, a phenomenon referred to as a PJ, obtained for the first time without using microspheres. PJ achieved with a fiber tip, easier to manipulate, opens far-reaching benefits for all PJ applications. The roles of parameters such as laser fluence, tip shape, and mode excitation are discussed. A good correlation has been observed between the computed PJ intensity distribution and the etched marks' sizes.

4.
Appl Opt ; 53(31): 7202-7, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25402877

ABSTRACT

Nanosecond near-IR lasers are commonly used for industrial laser processing. In this paper, we demonstrate that a 70 µm diameter beam generated from a 5 W, 28 ns, near-IR (1064 nm) Nd:YAG laser can etch a silicon wafer with a lateral feature size as small as 1.3 µm. Surprisingly with this laser, microetching can also be achieved on glass, despite the low absorption of this material at this wavelength. This breakthrough is carried out in ambient air by using glass microspheres with diameters between 4 and 40 µm that generate a concentrated beam at their vicinity, a phenomenon referred to as a photonic jet. The roles of parameters such as laser fluence, pulse number, microsphere diameter, and distance between the microsphere and the sample are discussed. A good correlation has been observed between the computed photonic jet intensity distribution and the etched marks' geometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...