Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 33(4): e4938, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533551

ABSTRACT

Regulation of SIRT1 activity is vital to energy homeostasis and plays important roles in many diseases. We previously showed that insulin triggers the epigenetic regulator DBC1 to prime SIRT1 for repression by the multifunctional trafficking protein PACS-2. Here, we show that liver DBC1/PACS-2 regulates the diurnal inhibition of SIRT1, which is critically important for insulin-dependent switch in fuel metabolism from fat to glucose oxidation. We present the x-ray structure of the DBC1 S1-like domain that binds SIRT1 and an NMR characterization of how the SIRT1 N-terminal region engages DBC1. This interaction is inhibited by acetylation of K112 of DBC1 and stimulated by the insulin-dependent phosphorylation of human SIRT1 at S162 and S172, catalyzed sequentially by CK2 and GSK3, resulting in the PACS-2-dependent inhibition of nuclear SIRT1 enzymatic activity and translocation of the deacetylase in the cytoplasm. Finally, we discuss how defects in the DBC1/PACS-2-controlled SIRT1 inhibitory pathway are associated with disease, including obesity and non-alcoholic fatty liver disease.


Subject(s)
Adaptor Proteins, Signal Transducing , Sirtuin 1 , Humans , Sirtuin 1/genetics , Sirtuin 1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Glycogen Synthase Kinase 3/metabolism , Protein Processing, Post-Translational , Insulin/metabolism
2.
Elife ; 102021 03 02.
Article in English | MEDLINE | ID: mdl-33650487

ABSTRACT

Adverse early-life exposures have a lasting negative impact on health. Neonatal hyperoxia that is a risk factor for bronchopulmonary dysplasia confers susceptibility to influenza A virus (IAV) infection later in life. Given our previous findings that the circadian clock protects against IAV, we asked if the long-term impact of neonatal hyperoxia vis-à-vis IAV infection includes circadian disruption. Here, we show that neonatal hyperoxia abolishes the clock-mediated time of day protection from IAV in mice, independent of viral burden through host tolerance pathways. We discovered that the lung intrinsic clock (and not the central or immune clocks) mediated this dysregulation. Loss of circadian protein, Bmal1, in alveolar type 2 (AT2) cells recapitulates the increased mortality, loss of temporal gating, and other key features of hyperoxia-exposed animals. Our data suggest a novel role for the circadian clock in AT2 cells in mediating long-term effects of early-life exposures to the lungs.


Subject(s)
Circadian Clocks/genetics , Hyperoxia/complications , Hyperoxia/virology , Influenza A virus/physiology , Orthomyxoviridae Infections/complications , Alveolar Epithelial Cells , Animals , Animals, Newborn , Disease Models, Animal , Hyperoxia/pathology , Lung/pathology , Lung/virology , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...