Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1270221, 2023.
Article in English | MEDLINE | ID: mdl-37942401

ABSTRACT

In this study, the efficacy of two of the best performing green solvents for the fractionation of lignocellulosic biomass, cholinium arginate (ChArg) as biobased ionic liquid (Bio-IL) and ChCl:lactic acid (ChCl:LA, 1:10) as natural deep eutectic solvent (NADES), was investigated and compared in the pretreatment of an agri-food industry waste, apple fibers (90°C for 1 h). For the sake of comparison, 1-butyl-3-methylimidazolium acetate (BMIM OAc) as one of the best IL able to dissolve cellulose was also used. After the pretreatment, two fractions were obtained in each case. The results gathered through FTIR and TG analyses of the two materials and the subsequent DNS assay performed after enzymatic treatment led to identify ChArg as the best medium to delignify and remove waxes, present on the starting apple fibers, thus producing a material substantially enriched in cellulose (CRM). Conversely, ChCl:LA did not provide satisfactorily results using these mild conditions, while BMIM OAc showed intermediate performance probably on account of the reduced crystallinity of cellulose after the dissolution-regeneration process. To corroborate the obtained data, FTIR and TG analyses were also performed on the residues collected after the enzymatic hydrolysis. At the end of the pretreatment, ChArg was also quantitatively recovered without significant alterations.

2.
J Funct Biomater ; 14(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37754873

ABSTRACT

Three-dimensional bioprinting has emerged as an attractive technology due to its ability to mimic native tissue architecture using different cell types and biomaterials. Nowadays, cell-laden bioink development or skin tissue equivalents are still at an early stage. The aim of the study is to propose a bioink to be used in skin bioprinting based on a blend of fibrinogen and alginate to form a hydrogel by enzymatic polymerization with thrombin and by ionic crosslinking with divalent calcium ions. The biomaterial ink formulation, composed of 30 mg/mL of fibrinogen, 6% of alginate, and 25 mM of CaCl2, was characterized in terms of homogeneity, rheological properties, printability, mechanical properties, degradation rate, water uptake, and biocompatibility by the indirect method using L929 mouse fibroblasts. The proposed bioink is a homogeneous blend with a shear thinning behavior, excellent printability, adequate mechanical stiffness, porosity, biodegradability, and water uptake, and it is in vitro biocompatible. The fibrinogen-based bioink was used for the 3D bioprinting of the dermal layer of the skin equivalent. Three different normal human dermal fibroblast (NHDF) densities were tested, and better results in terms of viability, spreading, and proliferation were obtained with 4 × 106 cell/mL. The skin equivalent was bioprinted, adding human keratinocytes (HaCaT) through bioprinting on the top surface of the dermal layer. A skin equivalent stained by live/dead and histological analysis immediately after printing and at days 7 and 14 of culture showed a tissuelike structure with two distinct layers characterized by the presence of viable and proliferating cells. This bioprinted skin equivalent showed a similar native skin architecture, paving the way for its use as a skin substitute for wound healing applications.

3.
Pharmaceutics ; 15(5)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37242573

ABSTRACT

Marine organisms (i.e., fish, jellyfish, sponges or seaweeds) represent an abundant and eco-friendly source of collagen. Marine collagen, compared to mammalian collagen, can be easily extracted, is water-soluble, avoids transmissible diseases and owns anti-microbial activities. Recent studies have reported marine collagen as a suitable biomaterial for skin tissue regeneration. The aim of this work was to investigate, for the first time, marine collagen from basa fish skin for the development of a bioink for extrusion 3D bioprinting of a bilayered skin model. The bioinks were obtained by mixing semi-crosslinked alginate with 10 and 20 mg/mL of collagen. The bioinks were characterised by evaluating the printability in terms of homogeneity, spreading ratio, shape fidelity and rheological properties. Morphology, degradation rate, swelling properties and antibacterial activity were also evaluated. The alginate-based bioink containing 20 mg/mL of marine collagen was selected for 3D bioprinting of skin-like constructs with human fibroblasts and keratinocytes. The bioprinted constructs showed a homogeneous distribution of viable and proliferating cells at days 1, 7 and 14 of culture evaluated by qualitative (live/dead) and qualitative (XTT) assays, and histological (H&E) and gene expression analysis. In conclusion, marine collagen can be successfully used to formulate a bioink for 3D bioprinting. In particular, the obtained bioink can be printed in 3D structures and is able to support fibroblasts and keratinocytes viability and proliferation.

4.
Environ Sci Pollut Res Int ; 30(7): 17268-17279, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36192589

ABSTRACT

The traditional use of organic solvents in various branches of industry is being rethought as these compounds very often display high volatility, toxicity and lipophilicity (related to the ability to interact with biological membranes). More recently, developments in the field of Green Chemistry are focusing on the design of more sustainable and cost-effective solvent alternatives like Ionic Liquids (ILs), bio-based solvents and natural deep eutectic solvents (NADESs). The present study aimed at performing an ecotoxicological screening of 15 NADESs using an extensive set of marine and freshwater bioassays, based on different endpoints as the following: immobilization of the crustacean Daphnia magna, growth inhibition of Raphidocelis subcapitata and of Phaeodactylum tricornutum, larval development alterations on the serpulid Ficopomatus enigmaticus and bioluminescence inhibition of Aliivibrio fischeri. What emerged was a general absence of toxicity of all samples. However, both algal assays showed a certain degree of biostimulation, up to over 100% growth increase in respect to controls with 8 out of 15 compounds tested with Raphidocelis subcapitata. Despite NADESs-induced negligible toxicity effects to invertebrates, encouraging their labelling as "sustainable" solvents, the liability of their intentional or accidental release into aquatic systems may represent a serious risk in terms of ecosystem functioning impairments.


Subject(s)
Chlorophyceae , Ionic Liquids , Deep Eutectic Solvents , Ecosystem , Solvents/chemistry , Ionic Liquids/toxicity , Ionic Liquids/chemistry , Biological Assay
5.
Molecules ; 27(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36364035

ABSTRACT

Solvatochromic probes are often used to understand solvation environments at the molecular scale. In the case of ionic liquids constituted by an anion and a cation, which are designed and paired in order to obtain a low melting point and other desirable physicochemical properties, these two indivisible components can interact in a very different way with the probe. This is the case with one of the most common probes: Reichardt's Dye. In the cases where the positive charge of the cation is delocalized on an aromatic ring such as imidazolium, the antibonding orbitals of the positively charged aromatic system are very similar in nature and energy to the LUMO of Reichardt's Dye. This leads to an interesting, specific cation-probe interaction that can be used to elucidate the nature of the ionic liquids' cations. Parallel computational and experimental investigations have been conducted to elucidate the nature of this interaction with respect to the molecular structure of the cation.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Pyridinium Compounds/chemistry , Molecular Structure , Cations
6.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628452

ABSTRACT

Broadband dielectric spectroscopy in a broad temperature range was employed to study ionic conductivity and dynamics in tetraalkylammonium- and tetraalkylphosphonium-based ionic liquids (ILs) having levulinate as a common anion. Combining data for ionic conductivity with data obtained for viscosity in a Walden plot, we show that ionic conductivity is controlled by viscosity while a strong association of ions takes place. Higher values for ionic conductivities in a broad temperature range were found for the tetraalkylphosphonium-based IL compared to its ammonium homolog in accordance with its lower viscosity. Levulinate used in the present study as anion was found to interact and associate stronger with the cations forming ion-pairs or other complexes compared to the NTf2 anion studied in literature. In order to analyze dielectric data, different fitting approaches were employed. The original random barrier model cannot well describe the conductivity especially at the higher frequencies region. In electric modulus representation, two overlapping mechanisms contribute to the broad low frequencies peak. The slower process is related to the conduction mechanism and the faster to the main polarization process of the complex dielectric permittivity representation. The correlation of the characteristic time scales of the previous relaxation processes was discussed in terms of ionic interactions.


Subject(s)
Ionic Liquids , Anions , Electric Conductivity , Ionic Liquids/chemistry , Ions/chemistry , Keto Acids , Viscosity
7.
Food Chem ; 386: 132717, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35344721

ABSTRACT

The objective of this study was to examine the bioactivity of extracts from apple pomace obtained by non-conventional green extraction methods (DES systems). Bioactivity was antioxidant capacity and ability to stimulate insulin secretion from pancreatic beta-cells. The antioxidant capacity of extracts was examined using the DPPH and the FRAP assay. Impact of the extracts on cell viability and insulin secretion were examined using the BRIN-BD11 cell line. ChCl:EG(1:4) extracts resulted in high antioxidant capacity in the DPPH assay (80.1% inhibition versus 11.3%). Extracts obtained from the classical systems demonstrated an ability to promote insulin secretion significantly higher than the positive control, p < 0.05. ChCl:EG(1:4) extracts stimulated insulin secretion to a lesser extent. Overall, the data provides evidence for the potential of DES systems to extract bioactive compounds from apple pomace that have relevance for metabolic health. Further optimisation of the extraction procedures should be tailored to the desired bioactive properties.


Subject(s)
Malus , Antioxidants/chemistry , Antioxidants/pharmacology , Deep Eutectic Solvents , Malus/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Solvents/chemistry
8.
Molecules ; 26(14)2021 Jul 11.
Article in English | MEDLINE | ID: mdl-34299487

ABSTRACT

Benzimidazole dicationic ionic liquids (BDILs) have not yet been widely explored in spite of their potential. Therefore, two structurally related families of BDILs, paired with either bromide or bistriflimide anions and bearing alkyl spacers ranging from C3 to C6, have been prepared. Their thermal properties have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), while their electrical properties have been assessed by cyclic voltammetry (CV). TG analysis confirmed the higher stability of the bistriflimide BDILs over the bromide BDILs, with minor variation within the two families. Conversely, DSC and CV allowed for ascertaining the role played by the spacer length. In particular, the thermal behavior changed dramatically among the members of the bistriflimide family, and all three possible thermal behavior types of ILs were observed. Furthermore, cyclic voltammetry showed different electrochemical window (C3(C1BenzIm)2/2Tf2N < C4(C1BenzIm)2/2Tf2N, C5(C1BenzIm)2/2Tf2N < C6(C1BenzIm)2/2Tf2N) as well as a reduction peak potential, shape, and intensity as a function of the spacer length. The results obtained highlight the benefit of accessing a more structurally diverse pool of compounds offered by dicationic ILs when compared to the parent monocationic ILs. In particular, gains are to be found in the ease of fine-tuning their properties, which translates in facilitating further investigations toward BDILs as designer solvents and catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...