Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytochemistry ; 58(7): 1007-13, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11730863

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) regulatory properties were studied in non-photosynthetic (mesocarp) and photosynthetic (peel) tissues from cherimoya (Annona cherimola Mill.) fruit stored in air, in order to gain a better understanding of in vivo enzyme regulation. Analyses were also performed with fruit treated with 20% CO(2)-20% O(2) to define the role of PEPC as part of an adaptive mechanism to high external carbon dioxide levels. The results revealed that the special kinetic characteristics of the enzyme from mesocarp--high V(max) and low sensibility to L-malate inhibition - are related to the active acid metabolism of these fruits and point to a high rate of reassimilation of respired CO(2) into keto-acids. With respect to fruit stored in air, PEPC in crude extracts from CO(2)-treated cherimoyas gave a similar V(max) (1.12+/-0.03 microkat x mg(-1) protein), a lower apparent K(m) (68+/-9 microM for PEP) and a higher I(50) of L-malate (5.95+/-0.3 mM). These kinetic values showed the increase in the affinity of this enzyme toward one of its substrate, PEP, by elevated external CO(2) concentrations. The lower K(m) value and lower sensitivity to L-malate are consistent with higher in vivo carboxylation reaction efficiency in CO(2)-treated cherimoyas, while pointing to an additional enzyme regulation system via CO(2).


Subject(s)
Annonaceae/enzymology , Carbon Dioxide/metabolism , Phosphoenolpyruvate Carboxylase/metabolism , Enzyme Inhibitors/pharmacology , Kinetics , Malates/pharmacology , Phosphoenolpyruvate Carboxylase/antagonists & inhibitors
2.
Plant Mol Biol ; 21(3): 437-49, 1993 Feb.
Article in English | MEDLINE | ID: mdl-8095163

ABSTRACT

Differential screening of a cDNA library made from RNA extracted from avocado (Persea americana Mill cv. Hass) fruit stored at low temperature (7 degrees C) gave 23 cDNA clones grouped into 10 families, 6 of which showed increased expression during cold storage and normal ripening. Partial DNA sequencing was carried out for representative clones. Database searches found homologies with a polygalacturonase (PG), endochitinase, cysteine proteinase inhibitor and several stress-related proteins. No homologies were detected for clones from six families and their biological role remains to be elucidated. A full-length cDNA sequence for avocado PG was obtained and the predicted amino acid sequence compared with those from other PGs. mRNA encoding PG increased markedly during normal ripening, slightly later than mRNAs for cellulase and ethylene-forming enzyme (EFE). Low-temperature storage delayed ripening and retarded the appearance of mRNAs for enzymes known to be involved in cell wall metabolism and ethylene synthesis, such as cellulase, PG and EFE, and also other mRNAs of unknown function. The removal of ethylene from the atmosphere surrounding stored fruit delayed the appearance of the mRNAs encoding cellulase and PG more than the cold storage itself, although it hardly affected the expression of the EFE mRNA or the accumulation of mRNAs homologous to some other unidentified clones.


Subject(s)
Fruit/genetics , Gene Expression Regulation, Enzymologic , Polygalacturonase/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Ethylenes/pharmacology , Fruit/enzymology , Fruit/growth & development , Gene Expression Regulation, Enzymologic/drug effects , Molecular Sequence Data , Poly A/metabolism , RNA, Messenger/metabolism , Refrigeration , Sequence Homology, Amino Acid , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...