Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 12(9)2021 09 10.
Article in English | MEDLINE | ID: mdl-34573378

ABSTRACT

Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy (TSE) of cervids caused by a misfolded variant of the normal cellular prion protein, and it is closely related to sheep scrapie. Variations in a host's prion gene, PRNP, and its primary protein structure dramatically affect susceptibility to specific prion disorders, and breeding for PRNP variants that prevent scrapie infection has led to steep declines in the disease in North American and European sheep. While resistant alleles have been identified in cervids, a PRNP variant that completely prevents CWD has not yet been identified. Thus, control of the disease in farmed herds traditionally relies on quarantine and depopulation. In CWD-endemic areas, depopulation of private herds becomes challenging to justify, leading to opportunities to manage the disease in situ. We developed a selective breeding program for farmed white-tailed deer in a high-prevalence CWD-endemic area which focused on reducing frequencies of highly susceptible PRNP variants and introducing animals with less susceptible variants. With the use of newly developed primers, we found that breeding followed predictable Mendelian inheritance, and early data support our project's utility in reducing CWD prevalence. This project represents a novel approach to CWD management, with future efforts building on these findings.


Subject(s)
Deer/genetics , Disease Resistance/genetics , Prion Proteins/genetics , Selective Breeding , Wasting Disease, Chronic/therapy , Agriculture/methods , Animals , Farms , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Haplotypes , Immunity, Herd/genetics , Male , Polymorphism, Single Nucleotide , Prion Diseases/complications , Prion Diseases/genetics , Prion Diseases/immunology , Prion Proteins/immunology , Selective Breeding/genetics , Wasting Disease, Chronic/genetics , Wasting Disease, Chronic/immunology , Wasting Disease, Chronic/prevention & control
2.
PLoS One ; 14(12): e0224342, 2019.
Article in English | MEDLINE | ID: mdl-31790424

ABSTRACT

Chronic wasting disease is a prion disease affecting both free-ranging and farmed cervids in North America and Scandinavia. A range of cervid species have been found to be susceptible, each with variations in the gene for the normal prion protein, PRNP, reportedly influencing both disease susceptibility and progression in the respective hosts. Despite the finding of several different PRNP alleles in white-tailed deer, the majority of past research has focused on two of the more common alleles identified-the 96G and 96S alleles. In the present study, we evaluate both infection status and disease stage in nearly 2100 farmed deer depopulated in the United States and Canada, including 714 CWD-positive deer and correlate our findings with PRNP genotype, including the more rare 95H, 116G, and 226K alleles. We found significant differences in either likelihood of being found infected or disease stage (and in many cases both) at the time of depopulation in all genotypes present, relative to the most common 96GG genotype. Despite high prevalence in many of the herds examined, infection was not found in several of the reported genotypes. These findings suggest that additional research is necessary to more properly define the role that these genotypes may play in managing CWD in both farmed and free-ranging white-tailed deer, with consideration for factors including relative fitness levels, incubation periods, and the kinetics of shedding in animals with these rare genotypes.


Subject(s)
Alleles , Deer/genetics , Disease Progression , Genetic Predisposition to Disease/genetics , Prion Proteins/genetics , Wasting Disease, Chronic/genetics , Animals
3.
PLoS One ; 14(9): e0222211, 2019.
Article in English | MEDLINE | ID: mdl-31527873

ABSTRACT

Choline geranate (also described as Choline And GEranic acid, or CAGE) has been developed as a novel biocompatible antiseptic material capable of penetrating skin and aiding the transdermal delivery of co-administered antibiotics. The antibacterial properties of CAGE were analyzed against 24 and 72 hour old biofilms of 11 clinically isolated ESKAPE pathogens (defined as Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter sp, respectively), including multidrug resistant (MDR) isolates. CAGE was observed to eradicate in vitro biofilms at concentrations as low as 3.56 mM (0.156% v:v) in as little as 2 hours, which represents both an improved potency and rate of biofilm eradication relative to that reported for most common standard-of-care topical antiseptics in current use. In vitro time-kill studies on 24 hour old Staphylococcus aureus biofilms indicate that CAGE exerts its antibacterial effect upon contact and a 0.1% v:v solution reduced biofilm viability by over three orders of magnitude (a 3log10 reduction) in 15 minutes. Furthermore, disruption of the protective layer of exopolymeric substances in mature biofilms of Staphylococcus aureus by CAGE (0.1% v:v) was observed in 120 minutes. Insight into the mechanism of action of CAGE was provided with molecular modeling studies alongside in vitro antibiofilm assays. The geranate ion and geranic acid components of CAGE are predicted to act in concert to integrate into bacterial membranes, affect membrane thinning and perturb membrane homeostasis. Taken together, our results show that CAGE demonstrates all properties required of an effective topical antiseptic and the data also provides insight into how its observed antibiofilm properties may manifest.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Choline/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Biofilms/drug effects , Microbial Sensitivity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...