Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 14509, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30266973

ABSTRACT

Ash deposited during volcanic eruptions can be resuspended by wind and become hazardous for health and infrastructure hours to decades after an eruption. Accurate resuspension forecasting requires accurate modelling of the threshold friction velocity of the volcanic particles (Uth*), which is the key parameter controlling volcanic ash detachment by wind. Using an environmental wind tunnel facility this study provides much needed experimental data on volcanic particle resuspension, with the first systematic parameterization of Uth* for ash from the regions Campi Flegrei in Italy and also Eyjafjallajökull in Iceland. In this study atmospheric relative humidity (and related ash moisture content) was systematically varied, from <10% to >90%, which in the case of the Eyjafjallajökull fine ash (<63 µm) produced a twofold increase in Uth*. Using the Campi Flegrei fine ash (<63 µm) an increase in Uth* of only around a factor of 1.5 was observed. Reasonable agreement with force balance resuspension models was seen, which implied an increase in interparticle adhesion force of up to a factor of six due to high humidity. Our results imply that, contrary to dry conditions, one single modelling scheme may not satisfy the resuspension of volcanic ash from different eruptions under wet conditions.

2.
Science ; 305(5685): 827-9, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15297664

ABSTRACT

The magnetic properties experiments are designed to help identify the magnetic minerals in the dust and rocks on Mars-and to determine whether liquid water was involved in the formation and alteration of these magnetic minerals. Almost all of the dust particles suspended in the martian atmosphere must contain ferrimagnetic minerals (such as maghemite or magnetite) in an amount of approximately 2% by weight. The most magnetic fraction of the dust appears darker than the average dust. Magnetite was detected in the first two rocks ground by Spirit.


Subject(s)
Magnetics , Mars , Minerals , Atmosphere , Extraterrestrial Environment , Ferrosoferric Oxide , Geologic Sediments , Iron , Oxides , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...