Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 6: 1154663, 2023.
Article in English | MEDLINE | ID: mdl-37408542

ABSTRACT

Identifying hit songs is notoriously difficult. Traditionally, song elements have been measured from large databases to identify the lyrical aspects of hits. We took a different methodological approach, measuring neurophysiologic responses to a set of songs provided by a streaming music service that identified hits and flops. We compared several statistical approaches to examine the predictive accuracy of each technique. A linear statistical model using two neural measures identified hits with 69% accuracy. Then, we created a synthetic set data and applied ensemble machine learning to capture inherent non-linearities in neural data. This model classified hit songs with 97% accuracy. Applying machine learning to the neural response to 1st min of songs accurately classified hits 82% of the time showing that the brain rapidly identifies hit music. Our results demonstrate that applying machine learning to neural data can substantially increase classification accuracy for difficult to predict market outcomes.

2.
Brain Sci ; 12(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36138976

ABSTRACT

The elderly have an elevated risk of clinical depression because of isolation from family and friends and a reticence to report their emotional states. The present study explored whether data from a commercial neuroscience platform could predict low mood and low energy in members of a retirement community. Neurophysiologic data were collected continuously for three weeks at 1Hz and averaged into hourly and daily measures, while mood and energy were captured with self-reports. Two neurophysiologic measures averaged over a day predicted low mood and low energy with 68% and 75% accuracy. Principal components analysis showed that neurologic variables were statistically associated with mood and energy two days in advance. Applying machine learning to hourly data classified low mood and low energy with 99% and 98% accuracy. Two-day lagged hourly neurophysiologic data predicted low mood and low energy with 98% and 96% accuracy. This study demonstrates that continuous measurement of neurophysiologic variables may be an effective way to reduce the incidence of mood disorders in vulnerable people by identifying when interventions are needed.

SELECTION OF CITATIONS
SEARCH DETAIL
...