Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(11): e2314606121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38446847

ABSTRACT

Endogenous viral elements (EVEs) are common genetic passengers in various protists. Some EVEs represent viral fossils, whereas others are still active. The marine heterotrophic flagellate Cafeteria burkhardae contains several EVE types related to the virophage mavirus, a small DNA virus that parasitizes the lytic giant virus CroV. We hypothesized that endogenous virophages may act as an antiviral defense system in protists, but no protective effect of virophages in wild host populations has been shown so far. Here, we tested the activity of virophage EVEs and studied their impact on giant virus replication. We found that endogenous mavirus-like elements (EMALEs) from globally distributed Cafeteria populations produced infectious virus particles specifically in response to CroV infection. However, reactivation was stochastic, often inefficient, and poorly reproducible. Interestingly, only one of eight EMALE types responded to CroV infection, implying that other EMALEs may be linked to different giant viruses. We isolated and cloned several reactivated virophages and characterized their particles, genomes, and infection dynamics. All tested virophages inhibited the production of CroV during coinfection, thereby preventing lysis of the host cultures in a dose-dependent manner. Comparative genomics of different C. burkhardae strains revealed that inducible EMALEs are common and are not linked to specific geographic locations. We demonstrate that naturally occurring virophage EVEs reactivate upon giant virus infection, thus providing a striking example that eukaryotic EVEs can become active under specific conditions. Moreover, our results support the hypothesis that virophages can act as an adaptive antiviral defense system in protists.


Subject(s)
Giant Viruses , Stramenopiles , Virus Diseases , Humans , Virophages , Giant Viruses/genetics , Stramenopiles/genetics , Antiviral Agents
2.
Nat Commun ; 15(1): 2307, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485920

ABSTRACT

Contractile rings are formed from cytoskeletal filaments during cell division. Ring formation is induced by specific crosslinkers, while contraction is typically associated with motor protein activity. Here, we engineer DNA nanotubes and peptide-functionalized starPEG constructs as synthetic crosslinkers to mimic this process. The crosslinker induces bundling of ten to hundred DNA nanotubes into closed micron-scale rings in a one-pot self-assembly process yielding several thousand rings per microliter. Molecular dynamics simulations reproduce the detailed architectural properties of the DNA rings observed in electron microscopy. Theory and simulations predict DNA ring contraction - without motor proteins - providing mechanistic insights into the parameter space relevant for efficient nanotube sliding. In agreement between simulation and experiment, we obtain ring contraction to less than half of the initial ring diameter. DNA-based contractile rings hold promise for an artificial division machinery or contractile muscle-like materials.


Subject(s)
Nanotubes , Proteins , Cell Division , Proteins/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , DNA/metabolism
3.
Macromol Biosci ; 23(8): e2200437, 2023 08.
Article in English | MEDLINE | ID: mdl-36459417

ABSTRACT

Imitation of cellular processes in cell-like compartments is a current research focus in synthetic biology. Here, a method is introduced for assembling an artificial cytoskeleton in a synthetic cell model system based on a poly(N-isopropyl acrylamide) (PNIPAM) composite material. Toward this end, a PNIPAM-based composite material inside water-in-oil droplets that are stabilized with PNIPAM-functionalized and commercial fluorosurfactants is introduced. The temperature-mediated contraction/release behavior of the PNIPAM-based cytoskeleton is investigated. The reversibility of the PNIPAM transition is further examined in bulk and in droplets and it could be shown that hydrogel induced deformation could be used to controllably manipulate droplet-based synthetic cell motility upon temperature changes. It is envisioned that a combination of the presented artificial cytoskeleton with naturally occurring components might expand the bandwidth of the bottom-up synthetic biology.


Subject(s)
Artificial Cells , Hydrogels , Water , Temperature , Cytoskeleton
4.
Biomaterials ; 285: 121522, 2022 06.
Article in English | MEDLINE | ID: mdl-35500392

ABSTRACT

Immune vigilance ensures body integrity by eliminating malignant cells through the complex but coordinated cooperation of highly diversified lymphocytes populations. The sheer complexity of the immune system has slowed development of immunotherapies based on top-down genetic engineering of lymphocytes. In contrast, bottom-up assembly of synthetic cell compartments has contributed novel engineering strategies to reverse engineer and understand cellular phenomena as molecularly defined systems. Towards reducing the complexity of immunological systems, herein, a bottom-up approach for controlled assembly of fully-synthetic immune-inspired cells from predefined molecular components based on giant unilamellar vesicles is described. For construction of target-specific cytotoxic immune cells, the Fas-ligand-based apoptosis-inducing immune cell module is combined with an antibody-mediated cellular cytotoxicity-inspired system. The designed immune cells identify leukemia cells by specific surface antigens. Subsequently, they form stable attachments sites and eliminate their targets by induction of apoptosis. A structural and functional characterization of the synthetic immune cells by means of microfluidics, live cell, confocal and electron microscopy, dynamic light scattering as well as flow cytometry is presented. This study demonstrates the bioinspired construction of effector immune cells from defined molecular building blocks, enabling learning-by-building approaches in synthetic immunology.


Subject(s)
Antineoplastic Agents , Artificial Cells , Artificial Cells/chemistry , Cytotoxicity, Immunologic , Fas Ligand Protein , Immunotherapy , Microfluidics , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
5.
ACS Nano ; 16(5): 7233-7241, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35377150

ABSTRACT

Cytoskeletal elements, like actin and myosin, have been reconstituted inside lipid vesicles toward the vision to reconstruct cells from the bottom up. Here, we realize the de novo assembly of entirely artificial DNA-based cytoskeletons with programmed multifunctionality inside synthetic cells. Giant unilamellar lipid vesicles (GUVs) serve as cell-like compartments, in which the DNA cytoskeletons are repeatedly and reversibly assembled and disassembled with light using the cis-trans isomerization of an azobenzene moiety positioned in the DNA tiles. Importantly, we induced ordered bundling of hundreds of DNA filaments into more rigid structures with molecular crowders. We quantify and tune the persistence length of the bundled filaments to achieve the formation of ring-like cortical structures inside GUVs, resembling actin rings that form during cell division. Additionally, we show that DNA filaments can be programmably linked to the compartment periphery using cholesterol-tagged DNA as a linker. The linker concentration determines the degree of the cortex-like network formation, and we demonstrate that the DNA cortex-like network can deform GUVs from within. All in all, this showcases the potential of DNA nanotechnology to mimic the diverse functions of a cytoskeleton in synthetic cells.


Subject(s)
Artificial Cells , Actins , Cytoskeleton , Unilamellar Liposomes/chemistry , DNA , Lipids
6.
ACS Synth Biol ; 8(5): 937-947, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31042361

ABSTRACT

Here, we introduce a one-pot method for the bottom-up assembly of complex single- and multicompartment synthetic cells. Cellular components are enclosed within giant unilamellar vesicles (GUVs), produced at the milliliter scale directly from small unilamellar vesicles (SUVs) or proteoliposomes with only basic laboratory equipment within minutes. Toward this end, we layer an aqueous solution, containing SUVs and all biocomponents, on top of an oil-surfactant mix. Manual shaking induces the spontaneous formation of surfactant-stabilized water-in-oil droplets with a spherical supported lipid bilayer at their periphery. Finally, to release GUV-based synthetic cells from the oil and the surfactant shell into the physiological environment, we add an aqueous buffer and a droplet-destabilizing agent. We prove that the obtained GUVs are unilamellar by reconstituting the pore-forming membrane protein α-hemolysin and assess the membrane quality with cryotransmission electron microscopy (cryoTEM), fluorescence recovery after photobleaching (FRAP), and zeta-potential measurements as well as confocal fluorescence imaging. We further demonstrate that our GUV formation method overcomes key challenges of standard techniques, offering high volumes, a flexible choice of lipid compositions and buffer conditions, straightforward coreconstitution of proteins, and a high encapsulation efficiency of biomolecules and even large cargo including cells. We thereby provide a simple, robust, and broadly applicable strategy to mass-produce complex multicomponent GUVs for high-throughput testing in synthetic biology and biomedicine, which can directly be implemented in laboratories around the world.


Subject(s)
Unilamellar Liposomes/chemical synthesis , Cryoelectron Microscopy , Fluorescence Recovery After Photobleaching , Hemolysin Proteins/metabolism , Magnesium Chloride/chemistry , Oils/chemistry , Surface-Active Agents/chemistry , Synthetic Biology/methods , Unilamellar Liposomes/metabolism , Water/chemistry
7.
Proc Natl Acad Sci U S A ; 115(28): 7332-7337, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941605

ABSTRACT

Virophages have the unique property of parasitizing giant viruses within unicellular hosts. Little is understood about how they form infectious virions in this tripartite interplay. We provide mechanistic insights into assembly and maturation of mavirus, a marine virophage, by combining structural and stability studies on capsomers, virus-like particles (VLPs), and native virions. We found that the mavirus protease processes the double jelly-roll (DJR) major capsid protein (MCP) at multiple C-terminal sites and that these sites are conserved among virophages. Mavirus MCP assembled in Escherichia coli in the absence and presence of penton protein, forming VLPs with defined size and shape. While quantifying VLPs in E. coli lysates, we found that full-length rather than processed MCP is the competent state for capsid assembly. Full-length MCP was thermally more labile than truncated MCP, and crystal structures of both states indicate that full-length MCP has an expanded DJR core. Thus, we propose that the MCP C-terminal domain serves as a scaffolding domain by adding strain on MCP to confer assembly competence. Mavirus protease processed MCP more efficiently after capsid assembly, which provides a regulation mechanism for timing capsid maturation. By analogy to Sputnik and adenovirus, we propose that MCP processing renders mavirus particles infection competent by loosening interactions between genome and capsid shell and destabilizing pentons for genome release into host cells. The high structural similarity of mavirus and Sputnik capsid proteins together with conservation of protease and MCP processing suggest that assembly and maturation mechanisms described here are universal for virophages.


Subject(s)
Capsid Proteins , Peptide Hydrolases , Virion , Virophages , Virus Assembly/physiology , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Virion/chemistry , Virion/genetics , Virion/metabolism , Virophages/chemistry , Virophages/physiology
8.
J Biol Chem ; 291(33): 17077-92, 2016 08 12.
Article in English | MEDLINE | ID: mdl-27317665

ABSTRACT

Anaerobic ammonium-oxidizing (anammox) bacteria derive their energy for growth from the oxidation of ammonium with nitrite as the electron acceptor. N2, the end product of this metabolism, is produced from the oxidation of the intermediate, hydrazine (N2H4). Previously, we identified N2-producing hydrazine dehydrogenase (KsHDH) from the anammox organism Kuenenia stuttgartiensis as the gene product of kustc0694 and determined some of its catalytic properties. In the genome of K. stuttgartiensis, kustc0694 is one of 10 paralogs related to octaheme hydroxylamine (NH2OH) oxidoreductase (HAO). Here, we characterized KsHDH as a covalently cross-linked homotrimeric octaheme protein as found for HAO and HAO-related hydroxylamine-oxidizing enzyme kustc1061 from K. stuttgartiensis Interestingly, the HDH trimers formed octamers in solution, each octamer harboring an amazing 192 c-type heme moieties. Whereas HAO and kustc1061 are capable of hydrazine oxidation as well, KsHDH was highly specific for this activity. To understand this specificity, we performed detailed amino acid sequence analyses and investigated the catalytic and spectroscopic (electronic absorbance, EPR) properties of KsHDH in comparison with the well defined HAO and kustc1061. We conclude that HDH specificity is most likely derived from structural changes around the catalytic heme 4 (P460) and of the electron-wiring circuit comprising seven His/His-ligated c-type hemes in each subunit. These nuances make HDH a globally prominent N2-producing enzyme, next to nitrous oxide (N2O) reductase from denitrifying microorganisms.


Subject(s)
Ammonium Compounds/chemistry , Bacterial Proteins/chemistry , Hydrazines/chemistry , Nitrogen/chemistry , Oxidoreductases/chemistry , Planctomycetales/enzymology , Ammonium Compounds/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalysis , Hydrazines/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Planctomycetales/genetics
9.
Neurobiol Dis ; 45(3): 851-61, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22178625

ABSTRACT

We have generated a new mouse model for congenital myasthenic syndromes by inserting the missense mutation L221F into the ε subunit of the acetylcholine receptor by homologous recombination. This mutation has been identified in man to cause a mild form of slow-channel congenital myasthenic syndrome with variable penetrance. In our mouse model we observe as in human patients prolonged endplate currents. The summation of endplate potentials may account for a depolarization block at increasing stimulus frequencies, moderate reduced muscle strength and tetanic fade. Calcium and intracellular vesicle accumulation as well as junctional fold loss and organelle degeneration underlying a typical endplate myopathy, were identified. Moreover, a remodeling of neuromuscular junctions occurs in a muscle-dependent pattern expressing variable phenotypic effects. Altogether, this mouse model provides new insight into the pathophysiology of congenital myasthenia and serves as a new tool for deciphering signaling pathways induced by excitotoxicity at peripheral synapses.


Subject(s)
Disease Models, Animal , Genetic Predisposition to Disease , Isoleucine/genetics , Myasthenic Syndromes, Congenital/genetics , Phenylalanine/genetics , Receptors, Nicotinic/genetics , Acetylcholinesterase/metabolism , Aminophenols , Animals , Biophysics , Diaphragm/physiopathology , Diaphragm/ultrastructure , Gene Expression Regulation/genetics , Hand Strength/physiology , Humans , In Vitro Techniques , Mice , Mice, Transgenic , Microscopy, Electron, Transmission , Miniature Postsynaptic Potentials/drug effects , Miniature Postsynaptic Potentials/genetics , Motor Endplate/physiopathology , Motor Endplate/ultrastructure , Mutagenesis/genetics , Myasthenic Syndromes, Congenital/pathology , Neurofilament Proteins/metabolism , Neuromuscular Junction/pathology , Neuromuscular Junction/physiopathology , Neuromuscular Junction/ultrastructure , Patch-Clamp Techniques , Receptors, Nicotinic/metabolism , S100 Proteins/metabolism , Synaptophysin/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...