Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 1153, 2019.
Article in English | MEDLINE | ID: mdl-31214134

ABSTRACT

Reef corals and sea anemones form symbioses with unicellular symbiotic dinoflagellates. The molecular circumventions that underlie the successful intracellular colonization of hosts by symbionts are still largely unknown. We conducted proteomic analyses to determine molecular differences of Exaiptasia pallida anemones colonized by physiologically different symbiont species, in comparison with symbiont-free (aposymbiotic) anemones. We compared one homologous species, Symbiodinium linucheae, that is natively associated with the clonal Exaiptasia strain (CC7) to another heterologous species, Durusdinium trenchii, a thermally tolerant species that colonizes numerous coral species. This approach allowed the discovery of a core set of host genes that are differentially regulated as a function of symbiosis regardless of symbiont species. The findings revealed that symbiont colonization at higher densities requires circumvention of the host cellular immunological response, enhancement of ammonium regulation, and suppression of phagocytosis after a host cell in colonized. Furthermore, the heterologous symbionts failed to duplicate the same level of homologous colonization within the host, evidenced by substantially lower symbiont densities. This reduced colonization of D. trenchii correlated with its inability to circumvent key host systems including autophagy-suppressing modulators, cytoskeletal alteration, and isomerase activity. The larger capability of host molecular circumvention by homologous symbionts could be the result of a longer evolutionary history of host/symbiont interactions, which translates into a more finely tuned symbiosis. These findings are of great importance within the context of the response of reef corals to climate change since it has been suggested that coral may acclimatize to ocean warming by changing their dominant symbiont species.

2.
PeerJ ; 6: e4494, 2018.
Article in English | MEDLINE | ID: mdl-29682405

ABSTRACT

Accelerating anthropogenic climate change threatens to destroy coral reefs worldwide through the processes of bleaching and disease. These major contributors to coral mortality are both closely linked with thermal stress intensified by anthropogenic climate change. Disease outbreaks typically follow bleaching events, but a direct positive linkage between bleaching and disease has been debated. By tracking 152 individual coral ramets through the 2014 mass bleaching in a South Florida coral restoration nursery, we revealed a highly significant negative correlation between bleaching and disease in the Caribbean staghorn coral, Acropora cervicornis. To explain these results, we propose a mechanism for transient immunological protection through coral bleaching: removal of Symbiodinium during bleaching may also temporarily eliminate suppressive symbiont modulation of host immunological function. We contextualize this hypothesis within an ecological perspective in order to generate testable predictions for future investigation.

3.
PeerJ ; 6: e4323, 2018.
Article in English | MEDLINE | ID: mdl-29441234

ABSTRACT

Corals host diverse microbial communities that are involved in acclimatization, pathogen defense, and nutrient cycling. Surveys of coral-associated microbes have been particularly directed toward Symbiodinium and bacteria. However, a holistic understanding of the total microbiome has been hindered by a lack of analyses bridging taxonomically disparate groups. Using high-throughput amplicon sequencing, we simultaneously characterized the Symbiodinium, bacterial, and fungal communities associated with the Caribbean coral Siderastrea siderea collected from two depths (17 and 27 m) on Conch reef in the Florida Keys. S. siderea hosted an exceptionally diverse Symbiodinium community, structured differently between sampled depth habitats. While dominated at 27 m by a Symbiodinium belonging to clade C, at 17 m S. siderea primarily hosted a mixture of clade B types. Most fungal operational taxonomic units were distantly related to available reference sequences, indicating the presence of a high degree of fungal novelty within the S. siderea holobiont and a lack of knowledge on the diversity of fungi on coral reefs. Network analysis showed that co-occurrence patterns in the S. siderea holobiont were prevalent among bacteria, however, also detected between fungi and bacteria. Overall, our data show a drastic shift in the associated Symbiodinium community between depths on Conch Reef, which might indicate that alteration in this community is an important mechanism facilitating local physiological adaptation of the S. siderea holobiont. In contrast, bacterial and fungal communities were not structured differently between depth habitats.

4.
Front Microbiol ; 8: 1050, 2017.
Article in English | MEDLINE | ID: mdl-28725216

ABSTRACT

Elasmobranchs represent a distinct group of cartilaginous fishes that harbor a remarkable ability to heal wounds rapidly and without infection. To date very little work has addressed this phenomenon although it is suggested that antibiotic capabilities associated with epidermal surfaces may be a factor. The study of benefits derived from mutualistic interactions between unicellular and multicellular organisms is a rapidly growing area of research. Here we survey and identify bacterial associates of three ray and one skate species in order to assess the potential for antibiotic production from elasmobranch associated bacteria as a novel source for new antibiotics.

5.
Article in English | MEDLINE | ID: mdl-20427024

ABSTRACT

Studies performed in the Gulf of Maine (GOM) during the spring of 2006 examined populations of the blue mussel, Mytilus edulis at several intertidal locations. Several parameters were measured including maximum length, diet (stable isotope composition), and the physiological performance of individual mussels using condition indices and RNA/DNA ratios. These same mussels were also assessed for their response to differences in seawater temperature by quantifying the expression of heat shock proteins (HSP70) and the activities of the antioxidant enzyme, superoxide dismutase (SOD). These data were then interpreted in the context of sea surface and air temperatures as well as chlorophyll a concentration and the genetic structure of mussel populations. Populations of M. edulis throughout the GOM were found to be genetically homogenous and consumed a mixed diet of phytoplankton and detritus. Mussels exposed to higher seawater temperatures also showed a significant increase in the expression of HSP70 and activities of SOD. The site-specific interplay between the amount of energy gained from the available food resources and the costs associated with protection against the effects of elevated seawater temperatures shows that these mussels exhibit phenotypic plasticity at different sites which could play an important role in the population dynamics of this key member of the rocky intertidal.


Subject(s)
Adaptation, Physiological/physiology , Diet/veterinary , Mytilus edulis/physiology , Seawater , Temperature , Animals , Behavior, Animal/physiology , HSP70 Heat-Shock Proteins/biosynthesis , Haplotypes , Maine , Mytilus edulis/classification , Mytilus edulis/genetics , Mytilus edulis/metabolism , Oceans and Seas , Phylogeny , Species Specificity , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...