Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36839838

ABSTRACT

Chemokines modulate the immune response by regulating the migration of immune cells. They are also known to participate in such processes as cell-cell adhesion, allograft rejection, and angiogenesis. Chemokines interact with two different subfamilies of G protein-coupled receptors: conventional chemokine receptors and atypical chemokine receptors. Here, we focused on the former one which has been linked to many inflammatory diseases, including: multiple sclerosis, asthma, nephritis, and rheumatoid arthritis. Available crystal and cryo-EM structures and homology models of six chemokine receptors (CCR1 to CCR6) were described and tested in terms of their usefulness in structure-based drug design. As a result of structure-based virtual screening for CCR2 and CCR3, several new active compounds were proposed. Known inhibitors of CCR1 to CCR6, acquired from ChEMBL, were used as training sets for two machine learning algorithms in ligand-based drug design. Performance of LightGBM was compared with a sequential Keras/TensorFlow model of neural network for these diverse datasets. A combination of structure-based virtual screening with machine learning allowed to propose several active ligands for CCR2 and CCR3 with two distinct compounds predicted as CCR3 actives by all three tested methods: Glide, Keras/TensorFlow NN, and LightGBM. In addition, the performance of these three methods in the prediction of the CCR2/CCR3 receptor subtype selectivity was assessed.

2.
Biomolecules ; 12(6)2022 06 07.
Article in English | MEDLINE | ID: mdl-35740918

ABSTRACT

A conserved, 26-residue sequence [AA(X2)[A/G][G/L](X2)GDV[I/L](X2)[V/L]NGE(X1)V(X6)] and corresponding structure repeating module were identified within the HtrA protease family using a non-redundant set (N = 20) of publicly available structures. While the repeats themselves were far from sequence perfect, they had notable conservation to a statistically significant level. Three or more repetitions were identified within each protein despite being statistically expected to randomly occur only once per 1031 residues. This sequence repeat was associated with a six stranded antiparallel ß-barrel module, two of which are present in the core of the structures of the PA clan of serine proteases, while a modified version of this module could be identified in the PDZ-like domains. Automated structural alignment methods had difficulties in superimposing these ß-barrels, but the use of a target human HtrA2 structure showed that these modules had an average RMSD across the set of structures of less than 2 Å (mean and median). Our findings support Dayhoff's hypothesis that complex proteins arose through duplication of simpler peptide motifs and domains.


Subject(s)
Serine Endopeptidases , Serine Proteases , Humans , Peptides/chemistry , Serine Endopeptidases/metabolism , Serine Proteases/chemistry , Serine Proteases/genetics
3.
Front Bioinform ; 1: 696368, 2021.
Article in English | MEDLINE | ID: mdl-36303725

ABSTRACT

Protein repeats are short, highly similar peptide motifs that occur several times within a single protein, for example the TPR and Ankyrin repeats. Understanding the role of mutation in these proteins is complicated by the competing facts that 1) the repeats are much more restricted to a set sequence than non-repeat proteins, so mutations should be harmful much more often because there are more residues that are heavily restricted due to the need of the sequence to repeat and 2) the symmetry of the repeats in allows the distribution of functional contributions over a number of residues so that sometimes no specific site is singularly responsible for function (unlike enzymatic active site catalytic residues). To address this issue, we review the effects of mutations in a number of natural repeat proteins from the tetratricopeptide and Ankyrin repeat families. We find that mutations are context dependent. Some mutations are indeed highly disruptive to the function of the protein repeats while mutations in identical positions in other repeats in the same protein have little to no effect on structure or function.

4.
Molecules ; 25(22)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203097

ABSTRACT

We present a method to rapidly identify hydrogen-mediated interactions in proteins (e.g., hydrogen bonds, hydrogen bonds, water-mediated hydrogen bonds, salt bridges, and aromatic π-hydrogen interactions) through heavy atom geometry alone, that is, without needing to explicitly determine hydrogen atom positions using either experimental or theoretical methods. By including specific real (or virtual) partner atoms as defined by the atom type of both the donor and acceptor heavy atoms, a set of unique angles can be rapidly calculated. By comparing the distance between the donor and the acceptor and these unique angles to the statistical preferences observed in the Protein Data Bank (PDB), we were able to identify a set of conserved geometries (15 for donor atoms and 7 for acceptor atoms) for hydrogen-mediated interactions in proteins. This set of identified interactions includes every polar atom type present in the Protein Data Bank except OE1 (glutamate/glutamine sidechain) and a clear geometric preference for the methionine sulfur atom (SD) to act as a hydrogen bond acceptor. This method could be readily applied to protein design efforts.


Subject(s)
Hydrogen/chemistry , Molecular Conformation , Proteins/chemistry , Hydrogen Bonding
5.
BMC Bioinformatics ; 21(1): 179, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32381046

ABSTRACT

BACKGROUND: Protein repeats can confound sequence analyses because the repetitiveness of their amino acid sequences lead to difficulties in identifying whether similar repeats are due to convergent or divergent evolution. We noted that the patterns derived from traditional "dot plot" protein sequence self-similarity analysis tended to be conserved in sets of related repeat proteins and this conservation could be quantitated using a Jaccard metric. RESULTS: Comparison of these dot plots obviated the issues due to sequence similarity for analysis of repeat proteins. A high Jaccard similarity score was suggestive of a conserved relationship between closely related repeat proteins. The dot plot patterns decayed quickly in the absence of selective pressure with an expected loss of 50% of Jaccard similarity due to a loss of 8.2% sequence identity. To perform method testing, we assembled a standard set of 79 repeat proteins representing all the subgroups in RepeatsDB. Comparison of known repeat and non-repeat proteins from the PDB suggested that the information content in dot plots could be used to identify repeat proteins from pure sequence with no requirement for structural information. Analysis of the UniRef90 database suggested that 16.9% of all known proteins could be classified as repeat proteins. These 13.3 million putative repeat protein chains were clustered and a significant amount (82.9%) of clusters containing between 5 and 200 members were of a single functional type. CONCLUSIONS: Dot plot analysis of repeat proteins attempts to obviate issues that arise due to the sequence degeneracy of repeat proteins. These results show that this kind of analysis can efficiently be applied to analyze repeat proteins on a large scale.


Subject(s)
Conserved Sequence , Evolution, Molecular , Proteins/chemistry , Repetitive Sequences, Amino Acid , Amino Acid Sequence , Databases, Protein , Mutation/genetics
6.
Nucleic Acids Res ; 48(W1): W77-W84, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32421769

ABSTRACT

Low complexity regions (LCRs) in protein sequences are characterized by a less diverse amino acid composition compared to typically observed sequence diversity. Recent studies have shown that LCRs may co-occur with intrinsically disordered regions, are highly conserved in many organisms, and often play important roles in protein functions and in diseases. In previous decades, several methods have been developed to identify regions with LCRs or amino acid bias, but most of them as stand-alone applications and currently there is no web-based tool which allows users to explore LCRs in protein sequences with additional functional annotations. We aim to fill this gap by providing PlaToLoCo - PLAtform of TOols for LOw COmplexity-a meta-server that integrates and collects the output of five different state-of-the-art tools for discovering LCRs and provides functional annotations such as domain detection, transmembrane segment prediction, and calculation of amino acid frequencies. In addition, the union or intersection of the results of the search on a query sequence can be obtained. By developing the PlaToLoCo meta-server, we provide the community with a fast and easily accessible tool for the analysis of LCRs with additional information included to aid the interpretation of the results. The PlaToLoCo platform is available at: http://platoloco.aei.polsl.pl/.


Subject(s)
Proteins/chemistry , Software , Amino Acids/analysis , Computer Graphics , Humans , Membrane Proteins/chemistry , Molecular Sequence Annotation , Protein Domains , Sequence Analysis, Protein
7.
Cell Death Dis ; 8(10): e3119, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29022916

ABSTRACT

HtrA2 (high-temperature requirement 2) is a human mitochondrial protease that has a role in apoptosis and Parkinson's disease. The structure of HtrA2 with an intact catalytic triad was determined, revealing a conformational change in the active site loops, involving mainly the regulatory LD loop, which resulted in burial of the catalytic serine relative to the previously reported structure of the proteolytically inactive mutant. Mutations in the loops surrounding the active site that significantly restricted their mobility, reduced proteolytic activity both in vitro and in cells, suggesting that regulation of HtrA2 activity cannot be explained by a simple transition to an activated conformational state with enhanced active site accessibility. Manipulation of solvent viscosity highlighted an unusual bi-phasic behavior of the enzymatic activity, which together with MD calculations supports the importance of motion in the regulation of the activity of HtrA2. HtrA2 is an unusually thermostable enzyme (TM=97.3 °C), a trait often associated with structural rigidity, not dynamic motion. We suggest that this thermostability functions to provide a stable scaffold for the observed loop motions, allowing them a relatively free conformational search within a rather restricted volume.


Subject(s)
Catalytic Domain/physiology , High-Temperature Requirement A Serine Peptidase 2/genetics , High-Temperature Requirement A Serine Peptidase 2/metabolism , Thermodynamics , Cell Line , Cloning, Molecular , Gene Deletion , Humans , Mitochondria/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Structure, Secondary , Viscosity
8.
J Pharmacokinet Pharmacodyn ; 42(5): 463-75, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26335661

ABSTRACT

Metformin, an established first-line treatment for patients with type 2 diabetes, has been associated with gastrointestinal (GI) adverse effects that limit its use. Histamine and serotonin have potent effects on the GI tract. The effects of metformin on histamine and serotonin uptake were evaluated in cell lines overexpressing several amine transporters (OCT1, OCT3 and SERT). Metformin inhibited histamine and serotonin uptake by OCT1, OCT3 and SERT in a dose-dependent manner, with OCT1-mediated amine uptake being most potently inhibited (IC50 = 1.5 mM). A chemoinformatics-based method known as Similarity Ensemble Approach predicted diamine oxidase (DAO) as an additional intestinal target of metformin, with an E-value of 7.4 × 10(-5). Inhibition of DAO was experimentally validated using a spectrophotometric assay with putrescine as the substrate. The Ki of metformin for DAO was measured to be 8.6 ± 3.1 mM. In this study, we found that metformin inhibited intestinal amine transporters and DAO at concentrations that may be achieved in the intestine after therapeutic doses. Further studies are warranted to determine the relevance of these interactions to the adverse effects of metformin on the gastrointestinal tract.


Subject(s)
Membrane Transport Proteins/metabolism , Metformin/metabolism , Amine Oxidase (Copper-Containing)/metabolism , Biological Transport/physiology , Cell Line , Diabetes Mellitus, Type 2/metabolism , HEK293 Cells , Humans , Intestinal Mucosa/metabolism , Kinetics , Octamer Transcription Factor-3/metabolism , Organic Cation Transporter 1/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism
9.
Proc Natl Acad Sci U S A ; 112(16): 5039-44, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25847998

ABSTRACT

Conformational change in protein-ligand complexes is widely modeled, but the protein accommodation expected on binding a congeneric series of ligands has received less attention. Given their use in medicinal chemistry, there are surprisingly few substantial series of congeneric ligand complexes in the Protein Data Bank (PDB). Here we determine the structures of eight alkyl benzenes, in single-methylene increases from benzene to n-hexylbenzene, bound to an enclosed cavity in T4 lysozyme. The volume of the apo cavity suffices to accommodate benzene but, even with toluene, larger cavity conformations become observable in the electron density, and over the series two other major conformations are observed. These involve discrete changes in main-chain conformation, expanding the site; few continuous changes in the site are observed. In most structures, two discrete protein conformations are observed simultaneously, and energetic considerations suggest that these conformations are low in energy relative to the ground state. An analysis of 121 lysozyme cavity structures in the PDB finds that these three conformations dominate the previously determined structures, largely modeled in a single conformation. An investigation of the few congeneric series in the PDB suggests that discrete changes are common adaptations to a series of growing ligands. The discrete, but relatively few, conformational states observed here, and their energetic accessibility, may have implications for anticipating protein conformational change in ligand design.


Subject(s)
Bacteriophage T4/enzymology , Benzene/chemistry , Muramidase/chemistry , Amino Acid Substitution , Ligands , Models, Molecular , Protein Structure, Secondary , Static Electricity , Thermodynamics
10.
J Med Chem ; 56(7): 2874-84, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23473072

ABSTRACT

Simplified model binding sites allow one to isolate entangled terms in molecular energy functions. Here, we investigate the effects on ligand recognition of the introduction of a histidine into a hydrophobic cavity in lysozyme. We docked 656040 molecules and tested 26 highly and nine poorly ranked. Twenty-one highly ranked molecules bound and five were false positives, while three poorly ranked molecules were false negatives. In the 16 X-ray complexes now known, the docking predictions overlaid well with the crystallographic results. Although ligand enrichment was high, the false negatives, the false positives, and the inability to rank order illuminated weaknesses in our scoring, particularly overweighed apolar and underweighted polar terms. Adjusting these led to new problems, reflecting the entangled nature of docking scoring functions. Changes in ligand affinity relative to other lysozyme cavities speak to the subtleties of molecular recognition even in these simple sites and to their relevance for testing different models of recognition.


Subject(s)
Histidine/chemistry , Binding Sites , Crystallography , Ligands , Models, Molecular
11.
Proc Natl Acad Sci U S A ; 109(40): 16179-83, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22988064

ABSTRACT

Synthetic cavitands and protein cavities have been widely studied as models for ligand recognition. Here we investigate the Met102 â†’ His substitution in the artificial L99A cavity in T4 lysozyme as a Kemp eliminase. The resulting enzyme had k(cat)/K(M) = 0.43 M(-1) s(-1) and a (k(cat)/K(M))/k(uncat) = 10(7) at pH 5.0. The crystal structure of this enzyme was determined at 1.30 Å, as were the structures of four complexes of substrate and product analogs. The absence of ordered waters or hydrogen bonding interactions, and the presence of a common catalytic base (His102) in an otherwise hydrophobic, buried cavity, facilitated detailed analysis of the reaction mechanism and its optimization. Subsequent substitutions increased eliminase activity by an additional four-fold. As activity-enhancing substitutions were engineered into the cavity, protein stability decreased, consistent with the stability-function trade-off hypothesis. This and related model cavities may provide templates for studying protein design principles in radically simplified environments.


Subject(s)
Bacteriophage T4/enzymology , Models, Molecular , Muramidase/chemistry , Protein Engineering/methods , Crystallography , Escherichia coli , Kinetics , Molecular Structure , Muramidase/genetics , Muramidase/metabolism , Thermodynamics
12.
J Am Chem Soc ; 129(51): 15750-1, 2007 Dec 26.
Article in English | MEDLINE | ID: mdl-18052280

ABSTRACT

The first committed biosynthetic step toward clavulanic acid, the clinically important beta-lactamase inhibitor, is catalyzed by the thiamin diphosphate (ThDP)-dependent enzyme N2-(2-carboxyethyl)arginine synthase (CEAS). This protein carries out a unique reaction among ThDP-dependent processes in which a C-N bond is formed, and an electrophilic acryloyl-thiazolium intermediate of ThDP is proposed to be involved, unlike the nucleophilic enamine species typically generated by this class of enzymes. Here we present evidence for the existence of the putative acryloyl adduct and report the unexpected observation of a long-wavelength chromophore (lambda = 433 nm), which we attribute to this enzyme-bound species. Chemical models were synthesized that both confirm its expected absorption (lambda = 310-320 nm) and exclude self-condensation and intramolecular imine formation with the cofactor as its cause. Circular dichroism experiments and others discount charge transfer as a likely explanation for the approximately 120 nm red shift of the chromophore ( approximately 25 kcal). Examples are well-known of charged molecules that exhibit significantly red-shifted UV-visible spectra compared to their neutral forms as, for example, polyene cations and dyes such as indigo and the cyanines. Rhodopsin is the classic biochemical example where the protein (opsin)-bound protonated Schiff base of retinal displays a remarkable range of red-shifted absorptions modulated by the protein environment. Similar tuning of the chromophoric behavior of the enzyme-bound CEAS acryloyl.ThDP species may be occurring.


Subject(s)
Clavulanic Acid/biosynthesis , Enzyme Inhibitors/metabolism , Thiamine Pyrophosphate/analogs & derivatives , Catalysis , Circular Dichroism , Models, Chemical , Spectrophotometry, Ultraviolet , Thiamine Pyrophosphate/chemistry , beta-Lactamase Inhibitors
13.
J Mol Biol ; 323(3): 585-98, 2002 Oct 25.
Article in English | MEDLINE | ID: mdl-12381311

ABSTRACT

Multifunctional proteins often appear to result from fusion of smaller proteins and in such cases typically can be separated into their ancestral components simply by cleaving the linker regions that separate the domains. Though possibly guided by sequence alignment, structural evidence, or light proteolysis, determination of the locations of linker regions remains empirical. We have developed an algorithm, named UMA, to predict the locations of linker regions in multifunctional proteins by quantification of the conservation of several properties within protein families, and the results agree well with structurally characterized proteins. This technique has been applied to a family of fungal type I iterative polyketide synthases (PKS), allowing prediction of the locations of all of the standard PKS domains, as well as two previously unidentified domains. Using these predictions, we report the cloning of the first fragment from the PKS norsolorinic acid synthase, responsible for biosynthesis of the first isolatable intermediate in aflatoxin production. The expression, light proteolysis and catalytic abilities of this acyl carrier protein-thioesterase didomain are discussed.


Subject(s)
Algorithms , Multienzyme Complexes/chemistry , Protein Structure, Tertiary , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/chemistry , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Animals , Anthraquinones/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA Polymerase I/chemistry , DNA Polymerase I/genetics , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Models, Molecular , Models, Statistical , Molecular Sequence Data , Multienzyme Complexes/genetics , Sulfurtransferases/chemistry , Sulfurtransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...