Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 107(10): 3071-3078, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36947843

ABSTRACT

Botrytis fruit rot (BFR) and anthracnose fruit rot (AFR) are diseases of concern to strawberry growers. Both diseases are managed mainly by fungicide applications from the nursery (plant production) to the end of the growing season (fruit production). In Florida, captan is the main broad-spectrum fungicide used to control BFR and AFR. It has been tested in many trials over the years in various programs in alternation with single-site fungicides or weekly applications. Due to its broad-spectrum activity, captan is a pivotal tool in fungicide resistance management, because resistance to several fungicides has been reported in populations causing BFR and AFR. Our objective was to determine the effectiveness and profitability of applications of captan for controlling BFR and AFR based on a univariate meta-analysis considering data from 25 field trials conducted from 2005 to 2021 in Florida. Captan applications significantly improved marketable yields and reduced BFR and AFR incidence during late- and total-season periods. Marketable yields were significantly improved even when the effect on disease control was not significant. Our results indicate 100% probability that weekly captan applications would return the investment during low, medium, and high strawberry pricing regimes, although the magnitude of the return will depend on strawberry market prices. However, the probabilities of reducing BFR, AFR, and culls were lower. Results from our meta-analysis demonstrate the value of captan as an important tool for strawberry growers. Captan applications, in addition to effectively controlling BFR and AFR and improving marketable yields, will result in investment returns at any strawberry price level.


Subject(s)
Fragaria , Fungicides, Industrial , Captan , Fungicides, Industrial/pharmacology , Botrytis , Fruit , Plant Diseases/prevention & control
2.
Plant Dis ; 107(7): 2177-2184, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36541878

ABSTRACT

Recently, the Florida strawberry industry faced unprecedented outbreaks of an emerging disease caused by the fungus Neopestalotipsis spp. Currently, there are no fungicides labeled to control this disease in the United States and the efficacy of single- and multisite fungicides is unknown. Therefore, this study aimed to determine the in vitro sensitivity of Neopestalotiopsis spp. isolates to fungicides with different modes of action and to evaluate the efficacy of these products on detached fruit and in the field. In preliminary in vitro tests, 30 commercially available fungicides were screened using discriminatory doses. The effective concentration that inhibited mycelial growth by 50% was determined for the most effective single-site fungicides. Four field experiments were conducted during the 2019-20, 2020-21, and 2021-22 seasons to determine product efficacy in managing the disease. The single-site fungicides fludioxonil, fluazinam, and sterol demethylation inhibitors, and the multisite fungicides captan, thiram, and chlorothalonil were the most effective in inhibiting pathogen growth and suppressing disease development. Conversely, products in Fungicide Resistance Action Committee (FRAC) groups 1 (methyl benzimidazole carbamate) and 7 (succinate-dehydrogenase inhibitors), except for benzovindiflupyr, were not effective against Neopestalotiopsis spp. Resistance to fungicides from FRAC group 11 (e.g., azoxystrobin) was confirmed by the presence of the G143A mutation in the cytochrome b gene together with inoculation tests and field trials. Our results provide information to support or discourage the registration of fungicides to manage Neopestalotiopsis fruit rot and leaf spot in strawberry production.


Subject(s)
Fragaria , Fungicides, Industrial , Xylariales , Fragaria/microbiology , Fungicides, Industrial/pharmacology , Captan , Mutation , Xylariales/genetics
3.
Plant Dis ; : PDIS06201290RE, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-32762327

ABSTRACT

Pestalotiopsis-like species have been reported affecting strawberry worldwide. Recently, severe and unprecedented outbreaks have been reported in Florida commercial fields where leaf, fruit, petiole, crown, and root symptoms were observed, and yield was severely affected. The taxonomic status of the fungus is confusing because it has gone through multiple reclassifications over the years. Morphological characteristics, phylogenetic analyses, and pathogenicity tests were evaluated for strawberry isolates recovered from diseased plants in Florida. Phylogenetic analyses derived from the combined internal transcribed spacer, ß-tub, and tef1 regions demonstrated that although there was low genetic diversity among the strawberry isolates, there was a clear separation of the isolates in two groups. The first group included isolates recovered over a period of several years, which was identified as Neopestalotiopsis rosae. Most isolates recovered during the recent outbreaks were genetically different and may belong to a new species. On potato dextrose agar, both groups produced white, circular, and cottony colonies. From the bottom, colonies were white to pale yellow for Neopestalotiopsis sp. and pale luteous to orange for N. rosae. Spores for both groups were five-celled with three median versicolored cells. Mycelial growth and spore production were higher for the new Neopestalotiopsis sp. isolates. Isolates from both groups were pathogenic to strawberry roots and crowns. However, the new Neopestalotiopsis sp. proved more aggressive in fruit and leaf inoculation tests, confirming observations from the recent outbreaks in commercial strawberry fields in Florida.

SELECTION OF CITATIONS
SEARCH DETAIL
...