Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 326(5): F780-F791, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38482553

ABSTRACT

Steroid-resistant nephrotic syndrome (SRNS) is the second most frequent cause of chronic kidney disease before the age of 25 yr. Nephrin, encoded by NPHS1, localizes to the slit diaphragm of glomerular podocytes and is the predominant structural component of the glomerular filtration barrier. Biallelic variants in NPHS1 can cause congenital nephrotic syndrome of the Finnish type, for which, to date, no causative therapy is available. Recently, adeno-associated virus (AAV) vectors targeting the glomerular podocyte have been assessed as a means for gene replacement therapy. Here, we established quantitative and reproducible phenotyping of a published, conditional Nphs1 knockout mouse model (Nphs1tm1.1Pgarg/J and Nphs2-Cre+) in preparation for a gene replacement study using AAV vectors. Nphs1 knockout mice (Nphs1fl/fl Nphs2-Cre+) exhibited 1) a median survival rate of 18 days (range: from 9 to 43 days; males: 16.5 days and females: 20 days); 2) an average foot process (FP) density of 1.0 FP/µm compared with 2.0 FP/µm in controls and a mean filtration slit density of 2.64 µm/µm2 compared with 4.36 µm/µm2 in controls; 3) a high number of proximal tubular microcysts; 4) the development of proteinuria within the first week of life as evidenced by urine albumin-to-creatinine ratios; and 5) significantly reduced levels of serum albumin and elevated blood urea nitrogen and creatinine levels. For none of these phenotypes, significant differences between sexes in Nphs1 knockout mice were observed. We quantitatively characterized five different phenotypic features of congenital nephrotic syndrome in Nphs1fl/fl Nphs2-Cre+ mice. Our results will facilitate future gene replacement therapy projects by allowing for sensitive detection of even subtle molecular effects.NEW & NOTEWORTHY To evaluate potential, even subtle molecular, therapeutic effects of gene replacement therapy (GRT) in a mouse model, prior rigorous quantifiable and reproducible disease phenotyping is necessary. Here, we, therefore, describe such a phenotyping effort in nephrin (Nphs1) knockout mice to establish the basis for GRT for congenital nephrotic syndrome. We believe that our findings set an important basis for upcoming/ongoing gene therapy approaches in the field of nephrology, especially for monogenic nephrotic syndrome.


Subject(s)
Membrane Proteins , Mice, Knockout , Nephrotic Syndrome , Phenotype , Podocytes , Animals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Female , Male , Nephrotic Syndrome/genetics , Nephrotic Syndrome/therapy , Podocytes/metabolism , Disease Models, Animal , Genetic Therapy/methods , Mice , Genetic Vectors
2.
Pediatr Nephrol ; 39(2): 455-461, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37670083

ABSTRACT

BACKGROUND: Steroid-resistant nephrotic syndrome (SRNS) is the second most common cause of kidney failure in children and adults under the age of 20 years. Previously, we were able to detect by exome sequencing (ES) a known monogenic cause of SRNS in 25-30% of affected families. However, ES falls short of detecting copy number variants (CNV). Therefore, we hypothesized that causal CNVs could be detected in a large SRNS cohort. METHODS: We performed genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on a cohort of 138 SRNS families, in whom we previously did not identify a genetic cause through ES. We evaluated ES and CNV data for variants in 60 known SRNS genes and in 13 genes in which variants are known to cause a phenocopy of SRNS. We applied previously published, predefined criteria for CNV evaluation. RESULTS: We detected a novel CNV in two genes in 2 out of 138 families (1.5%). The 9,673 bp homozygous deletion in PLCE1 and the 6,790 bp homozygous deletion in NPHS2 were confirmed across the breakpoints by PCR and Sanger sequencing. CONCLUSIONS: We confirmed that CNV analysis can identify the genetic cause in SRNS families that remained unsolved after ES. Though the rate of detected CNVs is minor, CNV analysis can be used when there are no other genetic causes identified. Causative CNVs are less common in SRNS than in other monogenic kidney diseases, such as congenital anomalies of the kidneys and urinary tract, where the detection rate was 5.3%. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Nephrotic Syndrome , Adult , Child , Humans , Young Adult , DNA Copy Number Variations , DNA Mutational Analysis , Genetic Predisposition to Disease , Homozygote , Mutation , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Nephrotic Syndrome/congenital , Sequence Deletion
3.
Am J Med Genet A ; 191(5): 1355-1359, 2023 05.
Article in English | MEDLINE | ID: mdl-36694287

ABSTRACT

Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of chronic kidney disease that manifests in children. To date ~23 different monogenic causes have been implicated in isolated forms of human CAKUT, but the vast majority remains elusive. In a previous study, we identified a homozygous missense variant in E26 transformation-specific (ETS) Variant Transcription Factor 4 (ETV4) causing CAKUT via dysregulation of the transcriptional function of ETV4, and a resulting abrogation of GDNF/RET/ETV4 signaling pathway. This CAKUT family remains the only family with an ETV4 variant reported so far. Here, we describe one additional CAKUT family with a homozygous truncating variant in ETV4 (p.(Lys6*)) that was identified by exome sequencing. The variant was found in an individual with isolated CAKUT displaying posterior urethral valves and renal dysplasia. The newly identified stop variant conceptually truncates the ETS_PEA3_N and ETS domains that regulate DNA-binding transcription factor activity. The variant has never been reported homozygously in the gnomAD database. To our knowledge, we here report the first CAKUT family with a truncating variant in ETV4, potentially causing the isolated CAKUT phenotype observed in the affected individual.


Subject(s)
Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Child , Humans , Urogenital Abnormalities/genetics , Kidney/abnormalities , Urinary Tract/metabolism , Vesico-Ureteral Reflux/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...