Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 123(4): 043203, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491260

ABSTRACT

Helium nanodroplets doped with polar molecules are studied by electrostatic deflection. This broadly applicable method allows even polyatomic molecules to attain subkelvin temperatures and nearly full orientation in the field. The resulting intense force from the field gradient strongly deflects even droplets with tens of thousands of atoms, the most massive neutral systems studied by beam "deflectometry." We use the deflections to extract droplet size distributions. Moreover, since each host droplet deflects according to its mass, spatial filtering of the deflected beam translates into size filtering of neutral fragile nanodroplets. As an example, we measure the dopant ionization probability as a function of droplet radius and determine the mean free path for charge hopping through the helium matrix. The technique will enable separation of doped and neat nanodroplets and size-dependent spectroscopic studies.

2.
Phys Chem Chem Phys ; 21(37): 20764-20769, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31513195

ABSTRACT

Long-range intermolecular forces are able to steer polar molecules submerged in superfluid helium nanodroplets into highly polar metastable configurations. We demonstrate that the presence of such special structures can be identified, in a direct and determinative way, by electrostatic deflection of the doped nanodroplet beam. The measurement also establishes the structures' electric dipole moments. In consequence, the introduced approach is complementary to spectroscopic studies of low-temperature molecular assembly reactions. It is enabled by the fact that within the cold superfluid matrix the molecular dipoles become nearly completely oriented by the applied electric field. As a result, the massive (tens of thousands of helium atoms) nanodroplets undergo significant deflections. The method is illustrated here by an application to dimers and trimers of dimethyl sulfoxide (DMSO) molecules. We interpret the experimental results with ab initio theory, mapping the potential energy surface of DMSO complexes and simulating their low temperature aggregation dynamics.

3.
J Phys Chem Lett ; 7(23): 4879-4883, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27934050

ABSTRACT

Electric deflection measurements on liquid helium nanodroplets doped with individual polar molecules demonstrate that the cold superfluid matrix enables full orientation of the molecular dipole along the external field. This translates into a deflection force that is increased enormously by comparison with typical deflection experiments, and it becomes possible to measurably deflect neutral doped droplets with masses of tens to hundreds of thousands of Daltons. By using continuous fluxes of fully oriented polar molecules and measuring the deflection of the doped nanodroplet beam, this approach makes it possible to directly determine the dipole moments of internally cryogenically cold molecules. The technique is broadly and generally applicable, including to complex and biological molecules.

4.
J Synchrotron Radiat ; 22(3): 666-74, 2015 May.
Article in English | MEDLINE | ID: mdl-25931083

ABSTRACT

The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4-17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described.

5.
J Chem Phys ; 142(11): 114306, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25796248

ABSTRACT

We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H···N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.


Subject(s)
Helium/chemistry , Histidine/chemistry , Protons , Tryptophan/chemistry , Dimerization , Electrons , Hydrogen Bonding , Indoles/chemistry , Mass Spectrometry , Models, Chemical , Temperature , Tryptophan/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...