Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 268(2): 403-15, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15063176

ABSTRACT

The acquisition of genomic methylation in the male germ line is initiated prenatally in diploid gonocytes, while DNA methylation in the female germ line is initiated postnatally in growing oocytes. We compared the temporal expression patterns of the DNA methyltransferases, DNMT1, DNMT3a, DNMT3b, and DNMT3l in the male and female germ lines. DNMT1 expression was examined by immunocytochemistry and Northerns with an emphasis on the prenatal period. In the female, there is a gradual down-regulation of DNMT1 protein in prenatal meiotic prophase I oocytes that is not associated with the production of an untranslated transcript, as it is in the male; these results suggest that the mechanism of meiotic down-regulation differs between the sexes. In the male, DNMT1 is unlikely to play a role in the prenatal acquisition of germ line methylation patterns since it is down-regulated in gonocytes between 14.5 and 18.5 days of gestation and is absent at the time of initiation of DNA methylation. To search for candidate DNMTs that could be involved in establishing methylation patterns in both germ lines, real-time RT-PCR was used to simultaneously study the expression profiles of the three DNMT3 enzymes in developing testes and ovaries; DNMT1 expression was included as a control. Expression profiles of DNMT3a and DNMT3l provide support for an interaction of the two enzymes during prenatal germ cell development and de novo methylation in the male. DNMT3l is the predominant DNMT3 enzyme expressed at high levels in the postnatal female germ line at the time of acquisition of DNA methylation patterns. DNMT1 and DNMT3b expression levels peak concomitantly, shortly after birth in the male, consistent with a role in the maintenance of methylation patterns in proliferating spermatogonia. Together, the results provide clues to specific roles for the different DNMT family members in de novo and maintenance methylation in the developing testis and ovary.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Animals , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , DNA Methyltransferase 3A , Down-Regulation , Female , Gene Expression Profiling , Immunohistochemistry , Male , Mice , Ovum/metabolism , Spermatozoa/metabolism , DNA Methyltransferase 3B
2.
Dev Biol ; 245(2): 304-14, 2002 May 15.
Article in English | MEDLINE | ID: mdl-11977983

ABSTRACT

The imprinting of mammalian genes depends on the maintenance of DNA methylation patterns during pre- and postimplantation development. Dnmt1o is a variant form of the somatically expressed Dnmt1 cytosine methyltransferase that is synthesized and stored in the oocyte cytoplasm and trafficks to the eight-cell nucleus during preimplantation development, where it maintains DNA methylation patterns on alleles of imprinted genes. Transcripts encoding Dnmt1 are present in preimplantation embryos, suggesting that Dnmt1 protein is also expressed in the preimplantation embryo, and may account for maintenance methylation at preimplantation stages other than the eight-cell embryo. However, using an antibody that detects Dnmt1, but not Dnmt1o, no Dnmt1 protein was detected on immunoblots or by immunocytochemical staining in wildtype preimplantation embryos. Moreover, Dnmt1 protein produced in the oocyte from a modified Dnmt1 allele, Dnmt1(1s/1o), trafficked to nuclei of eight-cell embryos, but not to nuclei of other stages. The highly restricted nuclear localization patterns of oocyte-derived Dnmt1o and Dnmt1 during preimplantation development add further support to the notion that DNA methyltransferases other than Dnmt1 are required for maintaining imprints during preimplantation development.


Subject(s)
Blastocyst/enzymology , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Embryonic and Fetal Development , Oogenesis , Alternative Splicing/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , DNA (Cytosine-5-)-Methyltransferase 1 , Gene Expression Regulation, Developmental , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Molecular Sequence Data , Oocytes/enzymology , Organ Specificity , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sex Characteristics
3.
Genomics ; 79(4): 530-8, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11944985

ABSTRACT

DNA methylation differences between maternal and paternal alleles of many imprinted genes are inherited from the male and female gametes and subsequently maintained during development. However, the stages of gametogenesis during which methylation imprints are established have not been well defined. In this study, we used bisulfite sequencing to determine the methylation dynamics of the imprinted genes small nuclear ribonucleoprotein N (Snrpn), insulin-like growth factor 2 receptor (Igf2r), mesoderm-specific transcript (Mest; formerly Peg1), paternally expressed gene 3 (Peg3), and H19 fetal liver mRNA (H19). We identified regions in the maternally imprinted genes (Snrpn, Mest, and Peg3) that were unmethylated in sperm but 100% methylated in mature oocytes. Igf2r, which is expressed from the maternal allele, was completely methylated within intronic differentially methylated region 2 in oocytes and unmethylated in sperm. The 5' region of H19, a paternally imprinted gene, was completely methylated in sperm and unmethylated in oocytes. We examined the methylation status of Snrpn during oocyte growth and maturation. Whereas the DNA of non-growing oocytes was mostly unmethylated, mid-size growing oocytes had a mosaic pattern of allelic methylation, and full acquisition of the methylation imprint was complete by metaphase II. We have identified regions within imprinted genes that show gamete-specific methylation patterns in mature germ cells and demonstrated that maternal methylation imprints on at least one imprinted gene, Snrpn, are established during the postnatal growth phase of oogenesis. Thus, whereas paternal imprints seem to be established early (in diploid gonocytes well before the onset of meiosis), maternal imprints are established late (in growing oocytes that are arrested in the diplotene stage of meiosis). These findings raise the possibility that assisted reproductive technologies that involve in vitro maturation of oocytes may result in developmental abnormalities due to incomplete methylation imprints in immature oocytes.


Subject(s)
DNA Methylation , Genomic Imprinting , Oocytes/physiology , Ribonucleoproteins, Small Nuclear , Spermatozoa/physiology , Animals , Autoantigens/genetics , Female , Gametogenesis/genetics , Male , Mice , snRNP Core Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...