Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(14): 141101, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652203

ABSTRACT

Data from the Voyager probes have provided us with the first measurement of cosmic ray intensities at MeV energies, an energy range that had previously not been explored. Simple extrapolations of models that fit data at GeV energies, e.g., from AMS-02, however, fail to reproduce the Voyager data in that the predicted intensities are too high. Oftentimes, this discrepancy is addressed by adding a break to the source spectrum or the diffusion coefficient in an ad hoc fashion, with a convincing physical explanation yet to be provided. Here, we argue that the discrete nature of cosmic ray sources, which is usually ignored, is instead a more likely explanation. We model the distribution of intensities expected from a statistical model of discrete sources and show that its expectation value is not representative but has a spectral shape different from that for a typical configuration of sources. The Voyager proton and electron data are however compatible with the median of the intensity distribution.

2.
Phys Rev Lett ; 123(25): 251104, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31922804

ABSTRACT

The magnetized solar wind modulates the Galactic cosmic ray flux in the heliosphere up to rigidities as high as 40 GeV. In this work, we present a new and straightforward extension of the popular but limited force-field model, thus providing a fast and robust method for phenomenological studies of Galactic cosmic rays. Our semianalytical approach takes into account charge-sign dependent modulation due to drifts in the heliospheric magnetic field and has been validated via comparison to a fully numerical code. Our model nicely reproduces the time-dependent AMS-02 measurements and we find the strength of diffusion and drifts to be strongly correlated with the heliospheric tilt angle and magnitude of the magnetic field. We are able to predict the electron and positron fluxes beyond the range for which measurements by AMS-02 have been presented. We have made an example script for the semianalytical model publicly available and we urge the community to adopt this approach for phenomenological studies.

3.
Phys Rev Lett ; 114(2): 021101, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25635539

ABSTRACT

In the standard diffusive picture for transport of cosmic rays (CRs), a gradient in the CR density induces a typically small, dipolar anisotropy in their arrival directions. This is being widely advertised as a tool for finding nearby sources. However, the predicted dipole amplitude at TeV and PeV energies exceeds the measured one by almost 2 orders of magnitude. Here, we critically examine the validity of this prediction, which is based on averaging over an ensemble of turbulent magnetic fields. We focus on (1) the deviations of the dipole in a particular random realization from the ensemble average, and (2) the possibility of a misalignment between the regular magnetic field and the CR gradient. We find that if the field direction and the gradient direction are close to ∼90°, the dipole amplitude is considerably suppressed and can be reconciled with observations, which sheds light on a long-standing problem. Furthermore, we show that the dipole direction in general does not coincide with the gradient direction, thus hampering the search for nearby sources.

4.
Phys Rev Lett ; 107(9): 091101, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21929220

ABSTRACT

Gamma-ray data from Fermi Large Area Telescope reveal a bilobular structure extending up to ∼50° above and below the Galactic Center. It has been argued that the gamma rays arise from hadronic interactions of high-energy cosmic rays which are advected out by a strong wind, or from inverse-Compton scattering of relativistic electrons accelerated at plasma shocks present in the bubbles. We explore the alternative possibility that the relativistic electrons are undergoing stochastic 2nd-order Fermi acceleration by plasma wave turbulence through the entire volume of the bubbles. The observed gamma-ray spectral shape is then explained naturally by the resulting hard electron spectrum modulated by inverse-Compton energy losses. Rather than a constant volume emissivity as in other models, we predict a nearly constant surface brightness, and reproduce the observed sharp edges of the bubbles.

5.
Phys Rev Lett ; 103(8): 081104, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19792709

ABSTRACT

The excess in the positron fraction measured by PAMELA has been interpreted as due to annihilation or decay of dark matter in the Galaxy. More prosaically it has been ascribed to direct production of positrons by nearby pulsars or due to pion production during diffusive shock acceleration of hadronic cosmic rays in nearby sources. We point out that measurements of secondary cosmic ray nuclei can discriminate between these possibilities. New data on the titanium-to-iron ratio support the hadronic source model above and enable a prediction for the boron-to-carbon ratio at energies above 100 GeV.

SELECTION OF CITATIONS
SEARCH DETAIL
...