Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Med Imaging ; 41(12): 3649-3662, 2022 12.
Article in English | MEDLINE | ID: mdl-35857732

ABSTRACT

Vessel enhancement (aka vesselness) filters, are part of angiographic image processing for more than twenty years. Their popularity comes from their ability to enhance tubular structures while filtering out other structures, especially as a preliminary step of vessel segmentation. Choosing the right vesselness filter among the many available can be difficult, and their parametrization requires an accurate understanding of their underlying concepts and a genuine expertise. In particular, using default parameters is often not enough to reach satisfactory results on specific data. Currently, only few benchmarks are available to help the users choosing the best filter and its parameters for a given application. In this article, we present a generic framework to compare vesselness filters. We use this framework to compare seven gold standard filters. Our experiments are performed on three public datasets: the hepatic Ircad dataset (CT images), the Bullit dataset (brain MRA images) and the synthetic VascuSynth dataset. We analyse the results of these seven filters both quantitatively and qualitatively. In particular, we assess their performances in key areas: the organ of interest, the whole vascular network neighbourhood and the vessel neighbourhood split into several classes, based on their diameters. We also focus on the vessels bifurcations, which are often missed by vesselness filters. We provide the code of the benchmark, which includes up-to-date C++ implementations of the seven filters, as well as the experimental setup (parameter optimization, result analysis, etc.). An online demonstrator is also provided to help the community apply and visually compare these vesselness filters.


Subject(s)
Algorithms , Benchmarking , Image Processing, Computer-Assisted/methods , Angiography , Brain/diagnostic imaging , Brain/blood supply
2.
Comput Methods Programs Biomed ; 208: 106157, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34091100

ABSTRACT

OBJECTIVE: This article presents an automatic image processing framework to extract quantitative high-level information describing the micro-environment of glomeruli in consecutive whole slide images (WSIs) processed with different staining modalities of patients with chronic kidney rejection after kidney transplantation. METHODS: This four-step framework consists of: 1) approximate rigid registration, 2) cell and anatomical structure segmentation 3) fusion of information from different stainings using a newly developed registration algorithm 4) feature extraction. RESULTS: Each step of the framework is validated independently both quantitatively and qualitatively by pathologists. An illustration of the different types of features that can be extracted is presented. CONCLUSION: The proposed generic framework allows for the analysis of the micro-environment surrounding large structures that can be segmented (either manually or automatically). It is independent of the segmentation approach and is therefore applicable to a variety of biomedical research questions. SIGNIFICANCE: Chronic tissue remodelling processes after kidney transplantation can result in interstitial fibrosis and tubular atrophy (IFTA) and glomerulosclerosis. This pipeline provides tools to quantitatively analyse, in the same spatial context, information from different consecutive WSIs and help researchers understand the complex underlying mechanisms leading to IFTA and glomerulosclerosis.


Subject(s)
Histological Techniques , Kidney Diseases , Algorithms , Humans , Image Processing, Computer-Assisted , Kidney/diagnostic imaging , Kidney Diseases/diagnostic imaging
3.
IEEE Trans Image Process ; 28(8): 3848-3859, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30835221

ABSTRACT

Curvilinear structure restoration in image processing procedures is a difficult task, which can be compounded when these structures are thin, i.e., when their smallest dimension is close to the resolution of the sensor. Many recent restoration methods involve considering a local gradient-based regularization term as prior, assuming gradient sparsity. An isotropic gradient operator is typically not suitable for thin curvilinear structures, since gradients are not sparse for these. In this paper, we propose a mixed gradient operator that combines a standard gradient in the isotropic image regions, and a directional gradient in the regions where specific orientations are likely. In particular, such information can be provided by curvilinear structure detectors (e.g., RORPO or Frangi filters). Our proposed mixed gradient operator, that can be viewed as a companion tool of such detectors, is proposed in a discrete framework and its formulation/computation holds in any dimension; in other words, it is valid in [Formula: see text], n ≥ 1 . We show how this mixed gradient can be used to construct image priors that take edge orientation, as well as intensity, into account, and then involved in various image processing tasks while preserving curvilinear structures. The experiments carried out on 2D, 3D, real, and synthetic images illustrate the relevance of the proposed gradient, and its use in variational frameworks for both denoising and segmentation tasks.

4.
IEEE Trans Pattern Anal Mach Intell ; 40(2): 304-317, 2018 02.
Article in English | MEDLINE | ID: mdl-28237921

ABSTRACT

The analysis of thin curvilinear objects in 3D images is a complex and challenging task. In this article, we introduce a new, non-linear operator, called RORPO (Ranking the Orientation Responses of Path Operators). Inspired by the multidirectional paradigm currently used in linear filtering for thin structure analysis, RORPO is built upon the notion of path operator from mathematical morphology. This operator, unlike most operators commonly used for 3D curvilinear structure analysis, is discrete, non-linear and non-local. From this new operator, two main curvilinear structure characteristics can be estimated: an intensity feature, that can be assimilated to a quantitative measure of curvilinearity; and a directional feature, providing a quantitative measure of the structure's orientation. We provide a full description of the structural and algorithmic details for computing these two features from RORPO, and we discuss computational issues. We experimentally assess RORPO by comparison with three of the most popular curvilinear structure analysis filters, namely Frangi Vesselness, Optimally Oriented Flux, and Hybrid Diffusion with Continuous Switch. In particular, we show that our method provides up to 8 percent more true positive and 50 percent less false positives than the next best method, on synthetic and real 3D images.

SELECTION OF CITATIONS
SEARCH DETAIL
...