Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 42-45, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29059806

ABSTRACT

Epidural and spinal anesthesia are mostly performed "blind" without any medical imaging. Currently, training of these procedures is performed on human specimens, virtual reality systems, manikins and mostly in clinical practice supervised by a professional. In this study a novel hybrid, low-cost patient simulator for the training of needle insertion into the epidural space was designed. The patient phantom provides a realistic force feedback comparable with biological tissue and enables sensing of the needle tip position during insertion. A display delivers the trainee a real-time feedback of the needle tip position.


Subject(s)
Needles , Anesthesia, Epidural , Epidural Space , Humans , Manikins , User-Computer Interface
2.
Physiol Meas ; 27(5): S271-80, 2006 May.
Article in English | MEDLINE | ID: mdl-16636418

ABSTRACT

We developed a 14-channel multifrequency magnetic induction tomography system (MF-MIT) for biomedical applications. The excitation field is produced by a single coil and 14 planar gradiometers are used for signal detection. The object under measurement was rotated (16 steps per turn) to obtain a full data set for image reconstruction. We make measurements at frequencies from 50 kHz to 1 MHz using a single frequency excitation signal or a multifrequency signal containing several frequencies in this range. We used two acquisition boards giving a total of eight synchronous channels at a sample rate of 5 MS s(-1) per channel. The real and imaginary parts of DeltaB/B(0) were calculated using coherent demodulation at all injected frequencies. Calibration, averaging and drift cancellation techniques were used before image reconstruction. A plastic tank filled with saline (D = 19 cm) and with conductive and/or paramagnetic perturbations was measured for calibration and test purposes. We used a FEM model and an eddy current solver to evaluate the experimental results and to reconstruct the images. Measured equivalent input noise voltage for each channel was 2 nV Hz(-1/2). Using coherent demodulation, with an integration time of 20 ms, the measured STD for the magnitude was 7 nV(rms) (close to the theoretical value only taking into account the amplifier's thermal noise). For long acquisition times the drift in the signal produced a bigger effect than the input noise (typical STD was 10 nV with a maximum of 35 nV at one channel) but this effect was reduced using a drift cancellation technique based on averaging. We were able to image a 2 S m(-1) agar sphere (D = 4 cm) inside the tank filled with saline of 1 S m(-1).


Subject(s)
Electric Impedance , Image Interpretation, Computer-Assisted/methods , Magnetics , Plethysmography, Impedance/instrumentation , Tomography/instrumentation , Transducers , Calibration , Equipment Design , Equipment Failure Analysis , Information Storage and Retrieval/methods , Plethysmography, Impedance/methods , Radiation Dosage , Radiometry/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Tomography/methods
3.
Physiol Meas ; 25(1): 159-68, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15005313

ABSTRACT

Magnetic induction tomography of biological tissue is used to reconstruct the changes in the complex conductivity distribution by measuring the perturbation of an alternating primary magnetic field. To facilitate the sensitivity analysis and the solution of the inverse problem a fast calculation of the sensitivity matrix, i.e. the Jacobian matrix, which maps the changes of the conductivity distribution onto the changes of the voltage induced in a receiver coil, is needed. The use of finite differences to determine the entries of the sensitivity matrix does not represent a feasible solution because of the high computational costs of the basic eddy current problem. Therefore, the reciprocity theorem was exploited. The basic eddy current problem was simulated by the finite element method using symmetric tetrahedral edge elements of second order. To test the method various simulations were carried out and discussed.


Subject(s)
Magnetics/instrumentation , Models, Biological , Tomography/methods , Brain Diseases/diagnosis , Electric Impedance , Electromagnetic Fields , Humans , Sensitivity and Specificity
4.
Physiol Meas ; 25(1): 315-23, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15005325

ABSTRACT

The measurement of hepatic iron overload is of particular interest in cases of hereditary hemochromatosis or in patients subject to periodic blood transfusion. The measurement of plasma ferritin provides an indirect estimate but the usefulness of this method is limited by many common clinical conditions (inflammation, infection, etc). Liver biopsy provides the most quantitative direct measurement of iron content in the liver but the risk of the procedure limits its acceptability. This work studies the feasibility of a magnetic induction (MI) low-cost system to measure liver iron overload. The excitation magnetic field (B0, frequency: 28 kHz) was produced by a coil, the perturbation produced by the object (deltaB) was detected using a planar gradiometer. We measured ten patients and seven volunteers in supine and prone positions. Each subject was moved in a plane parallel to the gradiometer several times to estimate measurement repeatability. The real and imaginary parts of deltaB/B0 were measured. Plastic tanks filled with water, saline and ferric solutions were measured for calibration purposes. We used a finite element model to evaluate the experimental results. To estimate the iron content we used the ratio between the maximum values for real and imaginary parts of deltaB/B0 and the area formed by the Nyquist plot divided by the maximum imaginary part. Measurements in humans showed that the contribution of the permittivity is stronger than the contribution of the permeability produced by iron stores in the liver. Defined iron estimators show a limited correlation with expected iron content in patients (R < or = 0.56). A more precise control of geometry and position of the subjects and measurements at multiple frequencies would improve the method.


Subject(s)
Hemochromatosis/diagnosis , Liver , Magnetics/instrumentation , Computer Simulation , Humans , Models, Theoretical , Pilot Projects
SELECTION OF CITATIONS
SEARCH DETAIL
...