Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36768447

ABSTRACT

The cycloaddition of CO2 into epoxides to form cyclic carbonates is a highly sought-after reaction for its potential to both reduce and use CO2, which is a greenhouse gas. In this paper, we present experimental and theoretical studies and a mechanistic approach for three catalytic systems. First, as Lewis base catalysts, imidazole and its derivatives, then as a Lewis acid catalyst, ZnI2 alone, and after that, the combined system of ZnI2 and imidazole. In the former, we aimed to discover the reasons for the varied reactivities of five Lewis base catalysts. Furthermore, we succeeded in reproducing the experimental results and trends using DFT. To add, we emphasized the importance of non-covalent interactions and their role in reactivity. In our case, the presence of a hydrogen bond was a key factor in decreasing the reactivity of some catalysts, thus leading to lower conversion rates. Finally, mechanistically understanding this 100% atom economy reaction can aid experimental chemists in designing better and more efficient catalytic systems.


Subject(s)
Carbon Dioxide , Lewis Bases , Cycloaddition Reaction , Epoxy Compounds , Imidazoles
2.
J Comput Chem ; 44(12): 1208-1220, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36708224

ABSTRACT

The selectivity and the nature of the molecular mechanism of the [3 + 2] cycloaddition (32CA) reaction between 2-(dimethylamino)-1H-indene-1,3(2H)-dione (AY11) and trans(E)-3,3,3-trifluoro-1-nitroprop-1-ene(FNP10) has been studied, in which the molecular electron density theory using density functional theory methods at the MPWB1K/6-31G(d) computational level was used. Analysis of the global reactivity indices permits us to characterize FNP10 as a strong electrophile and AY11 as a strong nucleophile. Four reactive pathways associated with the ortho/meta regioselective channels and endo/exo stereoselective approaches modes have been explored and characterized in the gas phase and in the benzene solvent. The analysis of the relative energies associated with the different reaction pathways indicates that the 32CA reactions of the azomethine ylide (AY) with the nitroalkene (FNP) is meta regioselective with high endo stereoselectivity. This result is in good agreement with the experimental observations. electron localization function topological analysis of the most favored reactive pathways allows for characterizing the mechanism of this 32CA reactions as a non-concerted two-stage one-step mechanism. Finally, non-covalent interactions and quantum theory of atoms in molecule analyses at the meta/endo transition state structure indicate that the presence of different several weak interactions, namely, CF and NH contributed in favoring the formation of a meta-endo cycloadduct.

3.
Inorg Chem ; 61(11): 4673-4680, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35254062

ABSTRACT

In the present work, we have calculated several density functional theory (DFT) reactivity descriptors for the aminopolycarboxylate (APC) acids at the B3LYP/6311++G (d,p) levels of theory, aiming to analyze their reactivity. Reactivity descriptors such as ionization energy, molecular hardness, electrophilicity, and condensed Fukui function local indices have been determined to predict the reactivity of APCs. The influence of the solvent was taken into account by employing the CPCM model. The results indicate that the solvation slightly modifies the tendency of the reactivity of the APCs studied. On the other hand, we applied a global and local charge-transfer partitioning model, which introduces two charge-transfer channels [one for accepting electrons (electrophilic) and another for donating one (nucleophilic)] to the complexation reaction of a set of APC acids with transition metals (Mn, Co, and Ni targets enlarged by Fe, Cu, and Zn). The correlation between the charges obtained for the interaction between APC acids and transition metal stability constants provides support for their interpretation as measures of the electrophilicity and nucleophilicity of a chemical species and, at the same time, allows one to describe the donation and back-donation processes in terms of the DFT of chemical reactivity. Also, the application of dual descriptors for these acids provides valuable information concerning the atoms in the reactants playing the most important roles in the reaction, thus helping to improve our understanding of the reaction under study.

4.
Molecules ; 26(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34684795

ABSTRACT

Electronic effects (inductive and mesomeric) are of fundamental importance to understand the reactivity and selectivity of a molecule. In this article, polarisation temperature is used as a principal index to describe how electronic effects propagate in halogeno-alkanes and halogeno-alkenes. It is found that as chain length increases, polarisation temperature decreases. As expected, polarisation is much larger for alkenes than for alkanes. Finally, the polarisation mode of the carbon-fluorine bond is found to be quite different and might explain the unusual reactivity of fluoride compounds.

5.
J Comput Chem ; 42(19): 1364-1372, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34056727

ABSTRACT

The present work reports the computational study of the major Diels-Alder reaction between 2-bromocycloalkenone and a variety of mono- and di-substituted dienes. Through density functional theory (DFT) calculations and subsequent activation strain model/energy decomposition analysis/conceptual DFT (C-DFT) analyses, the key factors governing the activation barriers heights, and thus reactivity, are characterized. In contrast with a previous study, steric effects do not appear to control reactivity. Conversely, in all presented cases, a subtle interplay between deformation and interaction energies is evidenced at transition states. In the end, neither term alone is enough to explain or predict reactivity. Yet a simple C-DFT descriptor allows to predict with a reasonable efficiency the activation barriers: the excitation energy needed to observe a charge transfer from the diene to the dienophile. Theoretical elements are provided to support the use of this descriptor.

6.
J Comput Chem ; 42(18): 1296-1311, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33931864

ABSTRACT

The selectivity and the mechanism of the uncatalyzed and AlCl3 catalyzed hetero-Diels-Alder reaction (HDR) between ([E]-4-methylpenta-2,4-dienyloxy)(tert-butyl)dimethylsilane 1 and benzaldehyde 2 have been studied using density functional theory at the MPWB1K/6-31G(d) level of theory. The uncatalyzed HDR between diene 1 and alkene 2 is characterized by a polar character and proceeds via an asynchronous one-step mechanism for the meta paths and synchronous for the ortho ones. In the presence of AlCl3 catalyst, the mechanism changes to be stepwise, while the first step is the rate-determining step. The activation energies widely decrease, and the polar character increases dramatically. A large analysis of the mechanism is performed using the activation strain model/energy decomposition analysis (ASM/EDA) model, the natural bond orbital (NBO) and state specific dual descriptors (SSDDs). The obtained results indicate that the combined interaction energy associated with the distortion of the reactants in these HDR are at the origin of the observed kinetics. NBO analyses were applied to estimate the Lewis-acid catalyst donor-acceptor interaction with the molecular system. The SSDD analysis shed light into the orientation effects on the reaction kinetics by providing important information about charge transfer interactions during the chemical reaction. It indicates that the more favorable HDR pathway have the lowest excitation energies, facilitating the interaction between diene 1 and benzaldehyde 2 moieties. Non-covalent interaction (NCI) and QTAIM analyses of the meta-endo structure indicate that the presence of several weak NCIs formed at this approach is at the origin of the meta-endo selectivity.

7.
Phys Chem Chem Phys ; 22(41): 23553-23562, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33073279

ABSTRACT

A fundamental link between conceptual density functional theory and statistical thermodynamics is herein drawn, showing that intermolecular electrostatic interactions can be understood in terms of effective work and heat exchange. From a more detailed analysis of the heat exchange in a perturbation theory framework, an associated entropy can be subsequently derived, which appears to be a suitable descriptor for the local polarisability of the electron density. A general rule of thumb is evidenced: the more the perturbation can be spread, both through space and among the excited states, the larger the heat exchange and entropy.

8.
J Phys Chem A ; 124(1): 152-164, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31769978

ABSTRACT

The electronic structure of Eu2+ compounds results from a complex combination of strongly correlated electrons and relativistic effects as well as weak ligand-field interaction. There is tremendous interest in calculating the electronic structure as nowadays the Eu2+ ion is becoming more and more crucial, for instance, in lighting technologies. Recently, interest in semiempirical methods to qualitatively evaluate the electronic structure and to model the optical spectra has gained popularity, although the theoretical methods strongly rely upon empirical inputs, hindering their prediction capabilities. Besides, ab initio multireference models are computationally heavy and demand very elaborative theoretical background. Herein, application of the ligand-field density functional theory (LFDFT) method that is recently available in the Amsterdam Modeling Suite is shown: (i) to elucidate the electronic structure properties on the basis of the multiplet energy levels of Eu configurations 4f7 and 4f65d1 and (ii) to model the optical spectra quite accurately if compared to the conventional time-dependent density functional theory tool. We present a theoretical study of the molecular Eu(η9-C9H9)2 complex and its underlying photoluminescence properties with respect to the Eu 4f-5d electron transitions. We model the excitation and emission spectra with good agreement with the experiments, opening up the possibility of modeling lanthanides in complex environment like nanomaterials by means of LFDFT at much-reduced computational resources and cost.

9.
J Phys Chem A ; 123(50): 10730-10738, 2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31714777

ABSTRACT

Conceptual density functional theory has been applied to study the Himbert intramolecular arene/allene Diels-Alder reaction. The effect of substitutions at different positions on the kinetics of these reactions has been analyzed. Therefore, from the calculation of the activation energies of more than 27 reactions involving concerted mechanisms, the selectivity of these reactions can be predicted and rationalized with the aid of conceptual DFT descriptors. An application of the two concepts, natural population analysis (NBO) and the state-specific dual descriptor (SSDD) for evaluating substituent effects, allows the investigation of the different interactions that promote a reaction compared to another. The SSDDs computed for the transition state structures provide important information about charge transfer interactions during the chemical reaction. In our case, the SSDD results show that the substituents promoting Himbert reaction have the lowest excitation energies, a fact which facilitates the allene/arene interaction. The NBO results show that according to the nature of the substituent, the Himbert reaction stands as a normal-electron demand or reverse. Thus, the interactions favoring each reaction are mentioned. The geometric deformation observed in the case of OCH3 is at the origin to the emergence of other low interactions between diene and dienophile as well as a strong electronic delocalization stabilizing the arene moiety. The calculated synchronicity indexes show that the Himbert intramolecular Diels-Alder reactions are very synchronous.

10.
Phys Chem Chem Phys ; 20(23): 16102-16116, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29855008

ABSTRACT

The present work studies theoretically the mechanisms involved in the fluorine substituent effect on the stereochemistry of Diels-Alder reactions. The case of R-butenone with cyclopentadiene is used for the purpose of modelling more general α-fluoro-α,ß-unsaturated carbonyl compounds, in catalyzed and uncatalyzed cases. A thorough analysis of the mechanism is performed using energy decomposition analysis (EDA) and conceptual DFT tools. It is shown that the endo conformation is privileged in all the studied cases with the exception of the α-fluorinated ketone. It is found that the endo selectivity of the non-fluorinated reactions is only due to the decrease of dispersion energy. On the other hand, the presence of a fluorine atom in the dienophile moieties increases remarkably the magnitude not only of the interaction energy between the reactants but that of the strain energy as well. Moreover, it is the strong destabilization strain energy occurring at the transition state of the endo pathway of the reaction cyclopentadiene/3-fluorobutenone that is mainly responsible for the exo selectivity. The effect of a Lewis acid catalyst on these reactions is also studied. The Lewis acid catalyst affects the activation energy of the studied Diels-Alder reactions but not their stereoselectivity. Furthermore, the dual descriptor results shed light onto the mechanism. Besides, natural bond orbital analysis (NBO) and determination of the condensed values of the state-specific dual descriptors (SSDD) are carried out to evaluate the donor-acceptor properties in these reactions. For the first time, a semiquantitative prediction of stereoselectivity due to substitutions of dienophile is obtained, thus complementing the previous interpretations (R. Hoffmann and R. B. Woodward, J. Am. Chem. Soc., 1965, 87, 4388; I. Fernández and F. M. Bickelhaupt, Chem. Soc. Rev., 2014, 43, 4953). Finally, since the role of dispersion forces is evidenced in some cases, a comparison between some popular exchange-correlation functionals is presented, assessing the performance of some standard functionals besides functionals with explicit dispersion corrections.

SELECTION OF CITATIONS
SEARCH DETAIL
...