Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38692848

ABSTRACT

AIM: Tarantulas are one of the largest predatory arthropods in tropical regions. Tarantulas though not lethal to humans, their venomous bite kills small animals and insect upon which they prey. To understand the abiotic and biotic components involved in Neotropical tarantula bites, we conducted a venom-microbiomics study in eight species from Costa Rica. METHODS AND RESULTS: We determined that the toxin profiles of tarantula venom are highly diverse using shotgun proteomics; the most frequently encountered toxins were ω-Ap2 toxin, neprilysin-1, and several teraphotoxins. Through culture-independent and culture-dependent methods, we determined the microbiota present in the venom and excreta to evaluate the presence of pathogens that could contribute to primary infections in animals, including humans. The presence of opportunistic pathogens with hemolytic activity was observed, with a prominence of Stenotrophomonas in the venoms. Other bacteria found in venoms and excreta with hemolytic activity included members of the genera Serratia, Bacillus, Acinetobacter, Microbacterium, and Morganella. CONCLUSIONS: Our data shed light on the venom- and gut-microbiome associated with Neotropical tarantulas. This information may be useful for treating bites from these arthropods in both humans and farm animals, while also providing insight into the toxins and biodiversity of this little-explored microenvironment.


Subject(s)
Spider Venoms , Spiders , Animals , Spiders/microbiology , Costa Rica , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Proteomics , Gastrointestinal Microbiome , Microbiota
2.
Microbiol Resour Announc ; 13(2): e0107623, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38289048

ABSTRACT

We present genome sequences of three Pseudomonadota strains isolated from an abandoned century-old oil exploration well. A Pseudomonas sp. genome showed a size of 5,378,420 bp, while Acinetobacter genomes sized 3,522,593 and 3,864,311 bp. Genomes included catabolic genes for benzoate, 4-hydroxybenzoate, salicylate, vanillate, indoleacetate, anthranilate, n-alkanes, 4-hydroxyphenylacetate, phenylacetate, among others.

SELECTION OF CITATIONS
SEARCH DETAIL
...