Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 21(10): 4294-4301, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32845125

ABSTRACT

Poly(ethylene glycols) (PEGs) are extensively explored by the pharma industry as foundations for new therapeutic products. PEGs are typically used for their conjugation to active drugs, peptides, and proteins and the likeliness to increase the half-life and enhance the therapeutic outcome. Considering the necessity of batch-to-batch consistency for clinical products, monodisperse PEGs are highly attractive but are generally limited to 5 kDa as an upper molecular weight (Mw) and with an oligomer purity of 95%. By amalgamating short, monodisperse PEGs with dendritic frameworks based on 2,2-bis(methylol)propionic acid polyesters, we showcase a robust synthetic approach to monodisperse PEGs with Mw ranging from 2 to 65 kDa. The latter is, to our knowledge, the highest Mw structure of its kind ever reported. Importantly, the dendritic multifunctional connector facilitated degradability at pH 7.4 at 37 °C, which is an important feature for the delivery of therapeutic agents.


Subject(s)
Polyesters , Polyethylene Glycols , Half-Life , Molecular Weight
2.
Biomacromolecules ; 21(10): 4273-4279, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32852953

ABSTRACT

Heterofunctional dendrimers with internal and external representations of functionalities are considered as the ultimate dendritic frameworks. This is reflected by their unprecedented scaffolding, such as precise control over the structure, molecular weight, number, and location of different cargos across the whole dendritic skeleton. Consequently, these dendrimers with multipurpose characters are the pinnacle of precision polymers and thereof are highly attractive to the scientific community as they can find use in a great number of cutting-edge applications, especially as discrete unimolecular carriers for therapeutic exploitation. Unfortunately, most established dendrimer families display external functionalities but lack internal scaffolding ability, which leads to inherent limitations to their full potential use as precision carriers. Consequently, here, we embark on a novel synthetic strategy facilitating the introduction of internal functionalization of established dendrimers. As a proof of concept, a new class of internally and externally functionalized multipurpose dendrimers based on the established 2,2-bis(methylol)propionic acid (bis-MPA) was successfully obtained by the elegant and simple design of AB2C monomers, amalgamated from two traditional AB2 monomers. Utilizing fluoride-promoted esterification (FPE), straightforward layer-by-layer divergent growth up to the fourth generation was successful in less than one day of reaction time, with a molecular weight of 15 kDa, and displaying 93 reactive groups divided by 45 internal and 48 external functionalities. The feasibility of postfunctionalization through click reactions is demonstrated, where the fast and effective attachment of drugs, dyes, and PEG chains is achieved, as well as cross-linking into multifunctional hydrogels. The simplicity and versatility of the presented strategy can easily be transferred to generate a myriad of functional materials such as polymers, surfaces, nanoparticles, or biomolecules.


Subject(s)
Dendrimers , Nanoparticles , Humans , Hydrogels , Polyesters , Polymers
3.
Adv Mater ; 30(52): e1804966, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30387212

ABSTRACT

The identification of a unique set of advanced materials that can bear extraordinary loads for use in bone and tooth repair will inevitably unlock unlimited opportunities for clinical use. Herein, the design of high-performance thermosets is reported based on triazine-trione (TATO) monomers using light-initiated thiol-yne coupling (TYC) chemistry as a polymerization strategy. In comparison to traditional thiol-ene coupling (TEC) systems, TYC chemistry has yielded highly dense networks with unprecedented mechanical properties. The most promising system notes 4.6 GPa in flexural modulus and 160 MPa in flexural strength, an increase of 84% in modulus and 191% in strength when compared to the corresponding TATO system based on TEC chemistry. Remarkably, the mechanical properties exceed those of polylactide (PLA) and challenge poly(ether ether ketone) PEEK and today's methacrylate-based dental resin composites. All the materials display excellent biocompatibility, in vitro, and are successfully: i) molded into medical devices for fracture repair, and ii) used as bone adhesive for fracture fixation and as tooth fillers with the outstanding bond strength that outperform methacrylate systems used today in dental restoration application. Collectively, a new era of advanced TYC materials is unfolded that can fulfill the preconditions as bone fixating implants and for tooth restorations.


Subject(s)
Bone Substitutes/chemistry , Dental Materials/chemistry , Triazines/chemistry , Animals , Bone and Bones/chemistry , Calorimetry, Differential Scanning , Cell Line , Elasticity , Humans , Hydrogen Bonding , Light-Curing of Dental Adhesives , Materials Testing , Methacrylates/chemistry , Spectrum Analysis, Raman , Swine
4.
Polymers (Basel) ; 8(4)2016 Mar 26.
Article in English | MEDLINE | ID: mdl-30979201

ABSTRACT

A new fluorescent dendrimeric antigen (DeAn) based on a dendron with amoxicilloyl terminal groups was synthesized. The synthesis was carried out using a novel class of all-aliphatic polyamide dendrimer (BisAminoalkylPolyAmide Dendrimers, or BAPAD) involving the direct condensation of 3,3'-diazidopivalic acid as a building block. Iterative azide reduction/amide formation increases the dendrimer generation. The BAPAD dendrimer was designed with a cystamine core. Reduction of the disulfide bond allows the incorporation of BAPAD dendrons into a 1,8-naphthalimide functionalized with a maleimide group. The fluorescence properties of DeAn were studied in PBS and compared with the properties of an equivalent dendron possessing amino-terminal groups. Both molecules shown high fluorescence quantum yields in PBS and could readily be visualized by fluorescence microscopy. DeAn was used as a synthetic antigen in a biomedical assay that tests their potential as an amoxicillin carrier in drug internalization by dendritic cells (DC) from tolerant and allergic patients. Cytometry data suggest that the dendrons are non-toxic and easily internalized by DCs, while confocal microscopy images indicate that the compounds are preferentially accumulated in the cytoplasm. These results indicate that BAPAD dendrons are good candidates for synthetic scaffolds for biomedical applications.

5.
Biosens Bioelectron ; 66: 115-23, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25460891

ABSTRACT

A label-free biosensing strategy for amoxicillin (AX) allergy diagnosis based on the combination of novel dendrimer-based conjugates and a recently developed nanoplasmonic sensor technology is reported. Gold nanodisks were functionalized with a custom-designed thiol-ending-polyamido-based dendron (d-BAPAD) peripherally decorated with amoxicilloyl (AXO) groups (d-BAPAD-AXO) in order to detect specific IgE generated in patient's serum against this antibiotic during an allergy outbreak. This innovative strategy, which follows a simple one-step immobilization procedure, shows exceptional results in terms of sensitivity and robustness, leading to a highly-reproducible and long-term stable surface which allows achieving extremely low limits of detection. Moreover, the viability of this biosensor approach to analyze human biological samples has been demonstrated by directly analyzing and quantifying specific anti-AX antibodies in patient's serum without any sample pretreatment. An excellent limit of detection (LoD) of 0.6ng/mL (i.e. 0.25kU/L) has been achieved in the evaluation of clinical samples evidencing the potential of our nanoplasmonic biosensor as an advanced diagnostic tool to quickly identify allergic patients. The results have been compared and validated with a conventional clinical immunofluorescence assay (ImmunoCAP test), confirming an excellent correlation between both techniques. The combination of a novel compact nanoplasmonic platform and a dendrimer-based strategy provides a highly sensitive label free biosensor approach with over two times better detectability than conventional SPR. Both the biosensor device and the carrier structure hold great potential in clinical diagnosis for biomarker analysis in whole serum samples and other human biological samples.


Subject(s)
Amoxicillin/immunology , Anti-Bacterial Agents/immunology , Drug Hypersensitivity/blood , Drug Hypersensitivity/diagnosis , Immunoglobulin E/blood , Surface Plasmon Resonance/instrumentation , Amoxicillin/adverse effects , Amoxicillin/chemistry , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/chemistry , Dendrimers/chemistry , Drug Hypersensitivity/immunology , Equipment Design , Gold/chemistry , Humans , Immunoglobulin E/immunology , Limit of Detection , Nanostructures/chemistry , Nylons/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...