Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Crit Care ; 30(4): 705-10, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25858820

ABSTRACT

INTRODUCTION: Heart rate complexity, commonly described as a "new vital sign," has shown promise in predicting injury severity, but its use in clinical practice is not yet widely adopted. We previously demonstrated the ability of this noninvasive technology to predict lifesaving interventions (LSIs) in trauma patients. This study was conducted to prospectively evaluate the utility of real-time, automated, noninvasive, instantaneous sample entropy (SampEn) analysis to predict the need for an LSI in a trauma alert population presenting with normal vital signs. METHODS: Prospective enrollment of patients who met criteria for trauma team activation and presented with normal vital signs was conducted at a level I trauma center. High-fidelity electrocardiogram recording was used to calculate SampEn and SD of the normal-to-normal R-R interval (SDNN) continuously in real time for 2 hours with a portable, handheld device. Patients who received an LSI were compared to patients without any intervention (non-LSI). Multivariable analysis was performed to control for differences between the groups. Treating clinicians were blinded to results. RESULTS: Of 129 patients enrolled, 38 (29%) received 136 LSIs within 24 hours of hospital arrival. Initial systolic blood pressure was similar in both groups. Lifesaving intervention patients had a lower Glasgow Coma Scale. The mean SampEn on presentation was 0.7 (0.4-1.2) in the LSI group compared to 1.5 (1.1-2.0) in the non-LSI group (P < .0001). The area under the curve with initial SampEn alone was 0.73 (95% confidence interval [CI], 0.64-0.81) and increased to 0.93 (95% CI, 0.89-0.98) after adding sedation to the model. Sample entropy of less than 0.8 yields sensitivity, specificity, negative predictive value, and positive predictive value of 58%, 86%, 82%, and 65%, respectively, with an overall accuracy of 76% for predicting an LSI. SD of the normal-to-normal R-R interval had no predictive value. CONCLUSIONS: In trauma patients with normal presenting vital signs, decreased SampEn is an independent predictor of the need for LSI. Real-time SampEn analysis may be a useful adjunct to standard vital signs monitoring. Adoption of real-time, instantaneous SampEn monitoring for trauma patients, especially in resource-constrained environments, should be considered.


Subject(s)
Critical Illness , Heart Rate/physiology , Wounds and Injuries/diagnosis , Adult , Blood Pressure/physiology , Case-Control Studies , Electrocardiography , Entropy , Female , Glasgow Coma Scale , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Respiration, Artificial , Sensitivity and Specificity , Trauma Centers , Trauma Severity Indices , Vital Signs , Wounds and Injuries/physiopathology
2.
Hernia ; 19(5): 849-52, 2015 Oct.
Article in English | MEDLINE | ID: mdl-24253380

ABSTRACT

Hernia repair is one of the most commonly performed procedures in general surgery. Use of mesh has been shown to decrease the overall recurrence rate. Mesh implantation, however, carries its own risks and complications. We report a case of a 41-year-old female who presented with nonspecific, chronic lower abdominal pain after ventral hernia repair with mesh implantation. The chronic pain was found to be the consequence of mesh migration and erosion into the sigmoid colon from a previous supraumbilical hernia repair. Hernia repair, use of mesh, and chronic abdominal pain are discussed.


Subject(s)
Abdominal Pain/etiology , Chronic Pain/etiology , Colon, Sigmoid/pathology , Hernia, Ventral/surgery , Herniorrhaphy/instrumentation , Surgical Mesh/adverse effects , Abdominal Pain/surgery , Adult , Chronic Pain/surgery , Female , Herniorrhaphy/adverse effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...