Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251114

ABSTRACT

Our study is focused on optimizing the synthesis conditions for the in situ oxidation of Fe particles to produce Fe@Fe3O4 core-shell powder and preparation via co-precipitation of ZnFe2O4 nanoparticles to produce Fe@Fe3O4/ZnFe2O4 soft magnetic composites (SMC) through a hybrid cold-sintering/spark plasma-sintering technique. XRD and FTIR measurements confirmed the formation of a nanocrystalline oxide layer on the surface of Fe powder and the nanosized nature of ZnFe2O4 nanoparticles. SEM-EDX investigations revealed that the oxidic phase of our composite was distributed on the surface of the Fe particles, forming a quasi-continuous matrix. The DC magnetic characteristics of the composite compact revealed a saturation induction of 0.8 T, coercivity of 590 A/m, and maximum relative permeability of 156. AC magnetic characterization indicated that for frequencies higher than 1 kHz and induction of 0.1 T, interparticle eddy current losses dominated due to ineffective electrical insulation between neighboring particles in the composite compact. Nevertheless, the magnetic characteristics obtained in both DC and AC magnetization regimes were comparable to those reported for cold-sintered Fe-based SMCs.

2.
Sci Rep ; 13(1): 18175, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875541

ABSTRACT

A Ga3+-substituted spinel magnetite nanoparticles (NPs) with the formula Ga0.9Fe2.1O4 were synthesized using both the one-pot solvothermal decomposition method (TD) and the microwave-assisted heating method (MW). Stable colloidal solutions were obtained by using triethylene glycol, which served as a NPs stabilizer and as a reaction medium in both methods. A narrow size distribution of NPs, below 10 nm, was achieved through selected nucleation and growth. The composition, structure, morphology, and magnetic properties of the NPs were investigated using FTIR spectroscopy, thermal analysis (TA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and magnetic measurements. NPs with the expected spinel structure were obtained in the case of the TD method, while the MW method produced, additionally, an important amount of gallium suboxide. The NPs, especially those prepared by TD, have superparamagnetic behavior with 2.02 µB/f.u. at 300 K and 3.06 µB/f.u. at 4.2 K. For the MW sample these values are 0.5 µB/f.u. and 0.6 µB/f.u. at 300 K and 4.2 K, respectively. The MW prepared sample contains a secondary phase and very small NPs which affects both the dimensional distribution and the magnetic behavior of NPs. The NPs were tested in vitro on amniotic mesenchymal stem cells. It was shown that the cellular metabolism is active in the presence of Ga0.9Fe2.1O4 NPs and preserves an active biocompatible cytoskeleton.


Subject(s)
Aluminum Oxide , Magnetite Nanoparticles , Magnesium Oxide , Magnetite Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared
3.
Nanomaterials (Basel) ; 10(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824660

ABSTRACT

In this study, the antibacterial activity of cerium oxide nanoparticles on two Gram-negative and three Gram-positive foodborne pathogens was investigated. CeO2 nanoparticles (CeO2 nps) were synthesized by a Wet Chemical Synthesis route, using the precipitation method and the Simultaneous Addition of reactants (WCS-SimAdd). The as-obtained precursor powders were investigated by thermal analysis (TG-DTA), to study their decomposition process and to understand the CeO2 nps formation. The composition, structure, and morphology of the thermally treated sample were investigated by FTIR, Raman spectroscopy, X-ray diffraction, TEM, and DLS. The cubic structure and average particle size ranging between 5 and 15 nm were evidenced. Optical absorption measurements (UV-Vis) reveal that the band gap of CeO2 is 2.61 eV, which is smaller than the band gap of bulk ceria. The antioxidant effect of CeO2 nps was determined, and the antibacterial test was carried out both in liquid and on solid growth media against five pathogenic microorganisms, namely Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Bacillus cereus. Cerium oxide nanoparticles showed growth inhibition toward all five pathogens tested with notable results. This paper highlights the perspectives for the synthesis of CeO2 nps with controlled structural and morphological characteristics and enhanced antibacterial properties, using a versatile and low-cost chemical solution method.

SELECTION OF CITATIONS
SEARCH DETAIL
...