Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Sleep Med Clin ; 19(2): 327-337, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692756

ABSTRACT

In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.


Subject(s)
Altitude , Hypoxia , Sleep Apnea Syndromes , Humans , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/therapy , Chronic Disease , Lung Diseases/complications
2.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660801

ABSTRACT

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Subject(s)
CX3C Chemokine Receptor 1 , Chemokine CX3CL1 , Disease Models, Animal , Hemangioma, Cavernous, Central Nervous System , Signal Transduction , Animals , Female , Humans , Male , Mice , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/genetics , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Hypoxia/metabolism , Hypoxia/complications , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/genetics
3.
Front Sleep ; 22023.
Article in English | MEDLINE | ID: mdl-38077744

ABSTRACT

Rationale: Obstructive sleep apnea (OSA) is associated with metabolic dysfunction, including progression of nonalcoholic fatty liver disease (NAFLD). Chronic intermittent hypoxia (IH) as a model of OSA worsens hepatic steatosis and fibrosis in rodents with diet induced obesity. However, IH also causes weight loss, thus complicating attempts to co-model OSA and NAFLD. We sought to determine the effect of various durations of IH exposure on metabolic and liver-related outcomes in a murine NAFLD model. We hypothesized that longer IH duration would worsen the NAFLD phenotype. Methods: Male C57BL/6J mice (n = 32) were fed a high trans-fat diet for 24 weeks, to induce NAFLD with severe steatohepatitis. Mice were exposed to an IH profile modeling severe OSA, for variable durations (0, 6, 12, or 18 weeks). Intraperitoneal glucose tolerance test was measured at baseline and at six-week intervals. Liver triglycerides, collagen and other markers of NAFLD were measured at sacrifice. Results: Mice exposed to IH for 12 weeks gained less weight (p = 0.023), and had lower liver weight (p = 0.008) relative to room air controls. These effects were not observed in the other IH groups. IH of longer duration transiently worsened glucose tolerance, but this effect was not seen in the groups exposed to shorter durations of IH. IH exposure for 12 or 18 weeks exacerbated liver fibrosis, with the largest increase in hepatic collagen observed in mice exposed to IH for 12 weeks. Discussion: Duration of IH significantly impacts clinically relevant outcomes in a NAFLD model, including body weight, fasting glucose, glucose tolerance, and liver fibrosis.

4.
J Clin Sleep Med ; 19(8): 1447-1456, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37082823

ABSTRACT

STUDY OBJECTIVES: The coexistence of obstructive sleep apnea (OSA) and chronic obstructive pulmonary disease (COPD) in a single individual, also known as overlap syndrome (OVS), is associated with higher cardiovascular risk and mortality than either OSA or COPD alone. However, the underlying mechanisms remain unclear. We hypothesized that patients with OVS have elevated systemic inflammatory biomarkers relative to patients with either disease alone, which could explain greater cardiovascular risk observed in OVS. METHODS: We included 255 participants in the study, 55 with COPD alone, 100 with OSA alone, 50 with OVS, and 50 healthy controls. All participants underwent a home sleep study, spirometry, and a blood draw for high-sensitivity C-reactive protein and total blood count analysis. In a randomly selected subset of 186 participants, inflammatory protein profiling was performed using Bio-Rad Bio-Plex Pro Human Cytokine 27-Plex Assays. Biomarker level differences across groups were identified using a mixed linear model. RESULTS: Levels of interleukin 6 (IL-6), high-sensitivity C-reactive protein (hs-CRP), and granulocyte colony stimulating factor (G-CSF) were higher in participants with OVS and COPD compared with healthy controls and participants with OSA. Furthermore, participants with OVS had higher circulating levels of leukocytes and neutrophils than those with COPD, OSA, and controls. CONCLUSIONS: COPD and OVS are associated with higher systemic inflammation relative to OSA and healthy controls. This work proposes the potential utilization of interleukin 6, granulocyte colony stimulating factor, and high-sensitivity C-reactive protein as screening biomarkers for COPD in patients with OSA. Inflammatory pathways may not fully explain the higher cardiovascular risk observed in OVS, indicating the need for further investigation. CITATION: Sanchez-Azofra A, Gu W, Masso-Silva JA, et al. Inflammation biomarkers in OSA, chronic obstructive pulmonary disease, and chronic obstructive pulmonary disease/OSA overlap syndrome. J Clin Sleep Med. 2023;19(8):1447-1456.


Subject(s)
Autoimmune Diseases , Pulmonary Disease, Chronic Obstructive , Sleep Apnea Syndromes , Sleep Apnea, Obstructive , Humans , C-Reactive Protein , Interleukin-6 , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea Syndromes/complications , Pulmonary Disease, Chronic Obstructive/complications , Inflammation/complications , Biomarkers , Autoimmune Diseases/complications , Granulocyte Colony-Stimulating Factor
5.
Sleep ; 46(2)2023 02 08.
Article in English | MEDLINE | ID: mdl-36413093
7.
Circ Res ; 131(11): 909-925, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36285625

ABSTRACT

BACKGROUND: Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by loss of function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). CCMs affect ≈1 out of 200 children and adults, and no pharmacologic therapy is available. CCM lesion count, size, and aggressiveness vary widely among patients of similar ages with the same mutation or even within members of the same family. However, what determines the transition from quiescent lesions into mature and active (aggressive) CCM lesions is unknown. METHODS: We use genetic, RNA-sequencing, histology, flow cytometry, and imaging techniques to report the interaction between CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils (CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils interaction) during the pathogenesis of CCMs in the brain tissue. RESULTS: Expression profile of astrocytes in adult mouse brains using translated mRNAs obtained from the purification of EGFP (enhanced green fluorescent protein)-tagged ribosomes (Aldh1l1-EGFP/Rpl10a) in the presence or absence of CCM lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) identifies a novel gene signature for neuroinflammatory astrocytes. CCM-induced reactive astrocytes have a neuroinflammatory capacity by expressing genes involved in angiogenesis, chemotaxis, hypoxia signaling, and inflammation. RNA-sequencing analysis on RNA isolated from brain endothelial cells in chronic Pdcd10BECKO mice (CCM endothelium), identified crucial genes involved in recruiting inflammatory cells and thrombus formation through chemotaxis and coagulation pathways. In addition, CCM endothelium was associated with increased expression of Nlrp3 and Il1b. Pharmacological inhibition of NLRP3 (NOD [nucleotide-binding oligomerization domain]-' LRR [leucine-rich repeat]- and pyrin domain-containing protein 3) significantly decreased inflammasome activity as assessed by quantification of a fluorescent indicator of caspase-1 activity (FAM-FLICA [carboxyfluorescein-fluorochrome-labeled inhibitors of caspases] caspase-1) in brain endothelial cells from Pdcd10BECKO in chronic stage. Importantly, our results support the hypothesis of the crosstalk between astrocytes and CCM endothelium that can trigger recruitment of inflammatory cells arising from brain parenchyma (microglia) and the peripheral immune system (leukocytes) into mature active CCM lesions that propagate lesion growth, immunothrombosis, and bleedings. Unexpectedly, partial or total loss of brain endothelial NF-κB (nuclear factor κB) activity (using Ikkbfl/fl mice) in chronic Pdcd10BECKO mice does not prevent lesion genesis or neuroinflammation. Instead, this resulted in a trend increase in the number of lesions and immunothrombosis, suggesting that therapeutic approaches designed to target inflammation through endothelial NF-κB inhibition may contribute to detrimental side effects. CONCLUSIONS: Our study reveals previously unknown links between neuroinflammatory astrocytes and inflamed CCM endothelium as contributors that trigger leukocyte recruitment and precipitate immunothrombosis in CCM lesions. However, therapeutic approaches targeting brain endothelial NF-κB activity may contribute to detrimental side effects.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Animals , Mice , Hemangioma, Cavernous, Central Nervous System/pathology , Endothelial Cells/metabolism , Neuroinflammatory Diseases , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Proto-Oncogene Proteins/genetics , Inflammation/genetics , Inflammation/pathology , Caspases , RNA
8.
Front Physiol ; 13: 885295, 2022.
Article in English | MEDLINE | ID: mdl-36035495

ABSTRACT

The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.

9.
J Clin Sleep Med ; 18(10): 2423-2432, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35855526

ABSTRACT

STUDY OBJECTIVES: Chronic mountain sickness (CMS) is commonly observed among Andean and other highland populations. Sleep-disordered breathing (SDB) is highly prevalent at high altitude, and SDB and nocturnal hypoxemia have been observed in CMS. Phlebotomy is commonly performed to treat CMS, but it is unknown whether reducing hematocrit improves SDB. We hypothesized that isovolemic hemodilution (IVHD) in CMS would reduce SBD severity and improve sleep efficiency. METHODS: Six participants with CMS and 8 without CMS, all residents of Cerro de Pasco, Peru (altitude 4340 m), completed baseline nocturnal sleep studies. CMS participants then underwent IVHD, and nocturnal sleep studies were repeated 24-48 hours after IVHD. We analyzed sleep apnea severity, nocturnal oxygenation, and sleep quality in those with CMS relative to those without CMS, and the effects of IVHD in CMS participants. RESULTS: Participants with CMS did not have altered sleep architecture, sleep apnea severity, or nocturnal oxygenation relative to non-CMS participants. However, IVHD in CMS increased apnea-hypopnea index (40.9 ± 6.9 events/h to 61.5 ± 7.7 events/h, P = .009). IVHD increased oxyhemoglobin desaturation index (P = .008) and the percentage of sleep time spent with oxyhemoglobin saturation at or below 80% (P = .012). There was no effect of IVHD on sleep efficiency, arousal index, or sleep staging. CONCLUSIONS: In this cohort, CMS was not associated with worsened SDB or changes in sleep architecture. IVHD, a putative therapeutic option for participants with CMS, appears to worsen nocturnal oxygenation and SDB within 48 hours post-IVHD. CITATION: Sanchez-Azofra A, Villafuerte FC, DeYoung PN, et al. Isovolemic hemodilution in chronic mountain sickness acutely worsens nocturnal oxygenation and sleep apnea severity. J Clin Sleep Med. 2022;18(10):2423-2432.


Subject(s)
Altitude Sickness , Sleep Apnea Syndromes , Altitude , Altitude Sickness/complications , Altitude Sickness/therapy , Chronic Disease , Hemodilution , Humans , Oxyhemoglobins , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/therapy
10.
Front Physiol ; 13: 873522, 2022.
Article in English | MEDLINE | ID: mdl-35432002

ABSTRACT

Animal models are useful to understand the myriad physiological effects of hypoxia. Such models attempt to recapitulate the hypoxemia of human disease in various ways. In this mini-review, we consider the various animal models which have been deployed to understand the effects of chronic hypoxia on pulmonary and systemic blood pressure, glucose and lipid metabolism, atherosclerosis, and stroke. Chronic sustained hypoxia (CSH)-a model of chronic lung or heart diseases in which hypoxemia may be longstanding and persistent, or of high altitude, in which effective atmospheric oxygen concentration is low-reliably induces pulmonary hypertension in rodents, and appears to have protective effects on glucose metabolism. Chronic intermittent hypoxia (CIH) has long been used as a model of obstructive sleep apnea (OSA), in which recurrent airway occlusion results in intermittent reductions in oxyhemoglobin saturations throughout the night. CIH was first shown to increase systemic blood pressure, but has also been associated with other maladaptive physiological changes, including glucose dysregulation, atherosclerosis, progression of nonalcoholic fatty liver disease, and endothelial dysfunction. However, models of CIH have generally been implemented so as to mimic severe human OSA, with comparatively less focus on milder hypoxic regimens. Here we discuss CSH and CIH conceptually, the effects of these stimuli, and limitations of the available data.

11.
Sleep ; 45(6)2022 06 13.
Article in English | MEDLINE | ID: mdl-34893914

ABSTRACT

STUDY OBJECTIVES: Chronic obstructive pulmonary disease and obstructive sleep apnea overlap syndrome is associated with excess mortality, and outcomes are related to the degree of hypoxemia. People at high altitudes are susceptible to periodic breathing, and hypoxia at altitude is associated with cardio-metabolic dysfunction. Hypoxemia in these scenarios may be described as superimposed sustained hypoxia (SH) plus intermittent hypoxia (IH), or overlap hypoxia (OH), the effects of which have not been investigated. We aimed to characterize the cardio-metabolic consequences of OH in mice. METHODS: C57BL/6J mice were subjected to either SH (FiO2 = 0.10), IH (FiO2 = 0.21 for 12 h, and FiO2 oscillating between 0.21 and 0.06, 60 times/hour, for 12 h), OH (FiO2 = 0.13 for 12 h, and FiO2 oscillating between 0.13 and 0.06, 60 times/hour, for 12 h), or room air (RA), n = 8/group. Blood pressure and intraperitoneal glucose tolerance test were measured serially, and right ventricular systolic pressure (RVSP) was assessed. RESULTS: Systolic blood pressure transiently increased in IH and OH relative to SH and RA. RVSP did not increase in IH, but increased in SH and OH by 52% (p < .001) and 20% (p = .001). Glucose disposal worsened in IH and improved in SH, with no change in OH. Serum low- and very-low-density lipoproteins increased in OH and SH, but not in IH. Hepatic oxidative stress increased in all hypoxic groups, with the highest increase in OH. CONCLUSIONS: OH may represent a unique and deleterious cardio-metabolic stimulus, causing systemic and pulmonary hypertension, and without protective metabolic effects characteristic of SH.


Subject(s)
Hypoxia , Sleep Apnea, Obstructive , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Phenotype
12.
Am J Respir Cell Mol Biol ; 65(4): 390-402, 2021 10.
Article in English | MEDLINE | ID: mdl-34003729

ABSTRACT

Obstructive sleep apnea is associated with insulin resistance, lipid dysregulation, and hepatic steatosis and fibrosis in nonalcoholic fatty liver disease (NAFLD). We have previously shown that hepatocyte HIF-1 (hypoxia-inducible factor-1) mediates the development of liver fibrosis in a mouse model of NAFLD. We hypothesized that intermittent hypoxia (IH) modeling obstructive sleep apnea would worsen hepatic steatosis and fibrosis in murine NAFLD, via HIF-1. Mice with hepatocyte-specific deletion of Hif1a (Hif1a-/-hep) and wild-type (Hif1aF/F) controls were fed a high trans-fat diet to induce NAFLD with steatohepatitis. Half from each group were exposed to IH, and the other half were exposed to intermittent air. A glucose tolerance test was performed just prior to the end of the experiment. Mitochondrial efficiency was assessed in fresh liver tissue at the time of death. The hepatic malondialdehyde concentration and proinflammatory cytokine levels were assessed, and genes of collagen and fatty acid metabolism were examined. Hif1a-/-hep mice gained less weight than wild-type Hif1a mice (-2.3 g, P = 0.029). There was also a genotype-independent effect of IH on body weight, with less weight gain in mice exposed to IH (P = 0.003). Fasting glucose, homeostatic model assessment for insulin resistance, and glucose tolerance test results were all improved in Hif1a-/-hep mice. Liver collagen was increased in mice exposed to IH (P = 0.033) and was reduced in Hif1a-/-hep mice (P < 0.001), without any significant exposure/genotype interaction being demonstrated. Liver TNF-α and IL-1ß were significantly increased in mice exposed to IH and were decreased in Hif1a-/-hep mice. We conclude that HIF-1 signaling worsens the metabolic profile and hastens NAFLD progression and that IH may worsen liver fibrosis. These effects are plausibly mediated by hepatic inflammatory stress.


Subject(s)
Hepatocytes/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/deficiency , Hypoxia/complications , Liver Cirrhosis/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Hepatocytes/pathology , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Insulin Resistance/physiology , Lipid Metabolism/immunology , Liver/metabolism , Liver Cirrhosis/complications , Liver Cirrhosis/pathology , Mice
13.
Curr Opin Pulm Med ; 26(6): 609-614, 2020 11.
Article in English | MEDLINE | ID: mdl-32890019

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to describe the variability of obstructive sleep apnea (OSA), both from a standpoint of underlying mechanisms and in terms of clinical manifestations. RECENT FINDINGS: Recent data suggest that not all patients with sleep apnea get their disease for the same reason. As such, no one variable is effective at defining which patients do or do not have sleep apnea. Identifying the mechanism(s) underlying OSA for an individual is helpful as it can help to determine whether personalized therapy could be developed based on an individual's characteristics. In addition, these underlying mechanisms may be helpful in predicting response to therapy and prognosticating regarding future complications. SUMMARY: OSA is a heterogeneous disease with highly varying underlying mechanisms. OSA has variable clinical manifestations with definable subsets having risk of particular complications. Future studies will be helpful to identify mechanisms underlying OSA using clinically accessible tools and then using these data to focus individualized treatment approaches.


Subject(s)
Phenotype , Sleep Apnea, Obstructive/etiology , Humans , Sleep Apnea, Obstructive/physiopathology , Sleep Apnea, Obstructive/therapy
16.
Am J Respir Crit Care Med ; 199(7): 830-841, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30422676

ABSTRACT

Recent studies have demonstrated that obstructive sleep apnea (OSA) is associated with the development and evolution of nonalcoholic fatty liver disease (NAFLD), independent of obesity or other shared risk factors. Like OSA, NAFLD is a prevalent disorder associated with major adverse health outcomes: Patients with NAFLD may develop cirrhosis, liver failure, and hepatocellular carcinoma. One major finding that has emerged from these studies is that the OSA-NAFLD association is related to the degree of nocturnal hypoxemia in OSA. Animal models have therefore largely focused on intermittent hypoxia, a key manifestation of OSA, to shed light on the mechanisms by which OSA may give rise to the complex metabolic disturbances that are seen in NAFLD. Intermittent hypoxia leads to tissue hypoxia and can result in oxidative stress, mitochondrial dysfunction, inflammation, and overactivation of the sympathetic nervous system, among many other maladaptive effects. In such models, intermittent hypoxia has been shown to cause insulin resistance, dysfunction of key steps in hepatic lipid metabolism, atherosclerosis, and hepatic steatosis and fibrosis, each of which is pertinent to the development and/or progression of NAFLD. However, many intriguing questions remain unanswered: Principally, how aggressively should the clinician screen for NAFLD in patients with OSA, and vice versa? In this review, we attempt to apply the best evidence from animal and human studies to highlight the relationship between these two disorders and to advocate for further trials aimed at defining these relationships more precisely.


Subject(s)
Hypoxia/complications , Hypoxia/physiopathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/physiopathology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/physiopathology , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
17.
Metabolism ; 84: 94-98, 2018 07.
Article in English | MEDLINE | ID: mdl-28966076

ABSTRACT

Obstructive sleep apnea (OSA) is common, and many cross-sectional and longitudinal studies have established OSA as an independent risk factor for the development of a variety of adverse metabolic disease states, including hypertension, insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, dyslipidemia, and atherosclerosis. Nasal continuous positive airway pressure (CPAP) has long been the mainstay of therapy for OSA, but definitive studies demonstrating the efficacy of CPAP in improving metabolic outcomes, or in reducing incident disease burden, are lacking; moreover, CPAP has variable rates of adherence. Therefore, the future of OSA management, particularly with respect to limiting OSA-related metabolic dysfunction, likely lies in a coming wave of alternative approaches to endophenotyping OSA patients, personalized care, and defining and targeting mechanisms of OSA-induced adverse health outcomes.


Subject(s)
Metabolic Diseases/therapy , Sleep Apnea Syndromes/therapy , Sleep Apnea, Obstructive/therapy , Therapies, Investigational/trends , Continuous Positive Airway Pressure , Cross-Sectional Studies , Humans , Longitudinal Studies , Metabolic Diseases/complications , Patient Compliance , Risk Factors , Sleep Apnea Syndromes/complications , Sleep Apnea Syndromes/metabolism , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Therapies, Investigational/methods
19.
PLoS One ; 11(12): e0168572, 2016.
Article in English | MEDLINE | ID: mdl-28030556

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) is associated with the progression of non-alcoholic fatty liver disease (NAFLD) to steatohepatitis and fibrosis. This progression correlates with the severity of OSA-associated hypoxia. In mice with diet induced obesity, hepatic steatosis leads to liver tissue hypoxia, which worsens with exposure to intermittent hypoxia. Emerging data has implicated hepatocyte cell signaling as an important factor in hepatic fibrogenesis. We hypothesized that hepatocyte specific knockout of the oxygen sensing α subunit of hypoxia inducible factor-1 (HIF-1), a master regulator of the global response to hypoxia, may be protective against the development of liver fibrosis. METHODS: Wild-type mice and mice with hepatocyte-specific HIF-1α knockout (Hif1a-/-hep) were fed a high trans-fat diet for six months, as a model of NAFLD. Hepatic fibrosis was evaluated by Sirius red stain and hydroxyproline assay. Liver enzymes, fasting insulin, and hepatic triglyceride content were also assessed. Hepatocytes were isolated from Hif1a-/-hep mice and wild-type controls and were exposed to sustained hypoxia (1% O2) or normoxia (16% O2) for 24 hours. The culture media was used to reconstitute type I collagen and the resulting matrices were examined for collagen cross-linking. RESULTS: Wild-type mice on a high trans-fat diet had 80% more hepatic collagen than Hif1a-/-hep mice (2.21 µg collagen/mg liver tissue, versus 1.23 µg collagen/mg liver tissue, p = 0.03), which was confirmed by Sirius red staining. Body weight, liver weight, mean hepatic triglyceride content, and fasting insulin were similar between groups. Culture media from wild-type mouse hepatocytes exposed to hypoxia allowed for avid collagen cross-linking, but very little cross-linking was seen when hepatocytes were exposed to normoxia, or when hepatocytes from Hif1a-/-hep mice were used in hypoxia or normoxia. CONCLUSIONS: Hepatocyte HIF-1 mediates an increase in liver fibrosis in a mouse model of NAFLD, perhaps due to liver tissue hypoxia in hepatic steatosis. HIF-1 is necessary for collagen cross-linking in an in vitro model of fibrosis.


Subject(s)
Disease Models, Animal , Hepatocytes/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Hypoxia/pathology , Liver Cirrhosis/pathology , Non-alcoholic Fatty Liver Disease/complications , Animals , Cells, Cultured , Hepatocytes/metabolism , Hypoxia/etiology , Hypoxia/metabolism , Liver Cirrhosis/etiology , Liver Cirrhosis/metabolism , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/physiopathology
20.
Sleep Biol Rhythms ; 13(1): 2-17, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26412981

ABSTRACT

It has recently become clear that obstructive sleep apnea (OSA) is an independent risk factor for the development of metabolic syndrome, a disorder of defective energy storage and use. Several mechanisms have been proposed to explain this finding, drawing upon the characteristics that define OSA. In particular, intermittent hypoxia, sleep fragmentation, elevated sympathetic tone, and oxidative stress - all consequences of OSA - have been implicated in the progression of poor metabolic outcomes in OSA. In this review we examine the evidence to support each of these disease manifestations of OSA as a unique risk for metabolic dysfunction. Tissue hypoxia and sleep fragmentation are each directly connected to insulin resistance and hypertension, and each of these also may increase sympathetic tone, resulting in defective glucose homeostasis, excessive lipolysis, and elevated blood pressure. Oxidative stress further worsens insulin resistance and in turn, metabolic dysfunction also increases oxidative stress. However, despite many studies linking each of these individual components of OSA to the development of metabolic syndrome, there are very few reports that actually provide a coherent narrative about the mechanism underlying metabolic dysfunction in OSA.

SELECTION OF CITATIONS
SEARCH DETAIL
...