Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 34: 13-29, 2016 12.
Article in English | MEDLINE | ID: mdl-27338173

ABSTRACT

In this paper, we propose metric Hashing Forests (mHF) which is a supervised variant of random forests tailored for the task of nearest neighbor retrieval through hashing. This is achieved by training independent hashing trees that parse and encode the feature space such that local class neighborhoods are preserved and encoded with similar compact binary codes. At the level of each internal node, locality preserving projections are employed to project data to a latent subspace, where separability between dissimilar points is enhanced. Following which, we define an oblique split that maximally preserves this separability and facilitates defining local neighborhoods of similar points. By incorporating the inverse-lookup search scheme within the mHF, we can then effectively mitigate pairwise neuron similarity comparisons, which allows for scalability to massive databases with little additional time overhead. Exhaustive experimental validations on 22,265 neurons curated from over 120 different archives demonstrate the superior efficacy of mHF in terms of its retrieval performance and precision of classification in contrast to state-of-the-art hashing and metric learning based methods. We conclude that the proposed method can be utilized effectively for similarity-preserving retrieval and categorization in large neuron databases.


Subject(s)
Machine Learning , Neurons/classification , Archives , Databases, Factual , Humans , Reproducibility of Results , Sensitivity and Specificity
2.
Neuroinformatics ; 14(4): 369-85, 2016 10.
Article in English | MEDLINE | ID: mdl-27155864

ABSTRACT

The steadily growing amounts of digital neuroscientific data demands for a reliable, systematic, and computationally effective retrieval algorithm. In this paper, we present Neuron-Miner, which is a tool for fast and accurate reference-based retrieval within neuron image databases. The proposed algorithm is established upon hashing (search and retrieval) technique by employing multiple unsupervised random trees, collectively called as Hashing Forests (HF). The HF are trained to parse the neuromorphological space hierarchically and preserve the inherent neuron neighborhoods while encoding with compact binary codewords. We further introduce the inverse-coding formulation within HF to effectively mitigate pairwise neuron similarity comparisons, thus allowing scalability to massive databases with little additional time overhead. The proposed hashing tool has superior approximation of the true neuromorphological neighborhood with better retrieval and ranking performance in comparison to existing generalized hashing methods. This is exhaustively validated by quantifying the results over 31266 neuron reconstructions from Neuromorpho.org dataset curated from 147 different archives. We envisage that finding and ranking similar neurons through reference-based querying via Neuron Miner would assist neuroscientists in objectively understanding the relationship between neuronal structure and function for applications in comparative anatomy or diagnosis.


Subject(s)
Brain/cytology , Data Mining , Image Processing, Computer-Assisted/methods , Neurons/cytology , Software , Algorithms , Animals , Databases, Factual , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...