Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 11(7)2020 07 03.
Article in English | MEDLINE | ID: mdl-32635161

ABSTRACT

CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein) genome editing is a powerful technology widely used in current genetic research. In the most simple and straightforward way it can be applied for a gene knockout resulting from repair errors, induced by dsDNA cleavage by Cas nuclease. For decades, zebrafish (Danio rerio) has been known as a convenient model object of developmental biology. Both commonly used nucleases SpCas9 (Streptococcus pyogenes Cas9) and LbCas12a (Lachnospiraceae bacterium Cas12a) are extensively used in this model. Among them, LbCas12a is featured with higher specificity and efficiency of homology-directed editing in human cells and mouse. But the editing outcomes for these two nucleases in zebrafish are still not compared quantitatively. Therefore, to reveal possible advantages of one nuclease in comparison to the other in the context of gene knockout generation, we compare here the outcomes of repair of the DNA breaks introduced by these two commonly used nucleases in zebrafish embryos. To address this question, we microinjected the ribonucleoprotein complexes of the both nucleases with the corresponding guide RNAs in zebrafish zygotes and sequenced the target gene regions after three days of development. We found that LbCas12a editing resulted in longer deletions and more rare inserts, in comparison to those generated by SpCas9, while the editing efficiencies (percentage of mutated copies of the target gene to all gene copies in the embryo) of both nucleases were the same. On the other hand, overlapping of protospacers resulted in similarities in repair outcome, although they were cut by two different nucleases. Thus, our results indicate that the repair outcome depends both on the nuclease mode of action and on protospacer sequence.


Subject(s)
CRISPR-Associated Protein 9/metabolism , Gene Editing/methods , Gene Knockout Techniques/methods , Zebrafish Proteins/genetics , Animals , CRISPR-Associated Protein 9/standards , CRISPR-Cas Systems , Gene Editing/standards , Gene Knockout Techniques/standards , Zebrafish
2.
Neurosci Biobehav Rev ; 105: 126-133, 2019 10.
Article in English | MEDLINE | ID: mdl-31369798

ABSTRACT

Schizophrenia is a severely debilitating, lifelong psychiatric disorder affecting approximately 1% of global population. The pathobiology of schizophrenia remains poorly understood, necessitating further translational research in this field. Experimental (animal) models are becoming indispensable for studying schizophrenia-related phenotypes and pro/antipsychotic drugs. Mounting evidence suggests the zebrafish (Danio rerio) as a useful tool to model various phenotypes relevant to schizophrenia. In addition to their complex robust behaviors, zebrafish possess high genetic and physiological homology to humans, and are also sensitive to drugs known to reduce or promote schizophrenia clinically. Here, we summarize findings on zebrafish application to modeling schizophrenia, as well as discuss recent progress and remaining challenges in this field. We also emphasize the need in further development and wider use of zebrafish models for schizophrenia to better understand its pathogenesis and enhance the search for new effective antipsychotics.


Subject(s)
Behavior, Animal , Disease Models, Animal , Schizophrenia , Translational Research, Biomedical , Zebrafish , Animals , Behavior, Animal/physiology , Schizophrenia/genetics , Schizophrenia/physiopathology , Zebrafish/physiology
3.
Neurosci Lett ; 701: 234-239, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30836120

ABSTRACT

Pharmacological agents acting at alpha-2 adrenergic receptors are widely used in physiology and neuroscience research. Mounting evidence of their potential utility in clinical and experimental psychopharmacology, necessitates new models and novel model organisms for their screening. Here, we characterize behavioral effects of mafedine (6-oxo-1-phenyl-2- (phenylamino)-1,6-dihydropyrimidine-4-sodium olate), a novel drug with alpha-2 adrenergic receptor agonistic effects, in adult zebrafish (Danio rerio) in the novel tank test of anxiety and activity. Following an acute 20-min exposure, mafedine at 60 mg/L produced a mild psychostimulant action with some anxiogenic-like effects. Repeated acute 20-min/day administration of mafedine for 7 consecutive days at 1, 5 and 10 mg/L had a similar action on fish behavior as an acute exposure to 60 mg/L. Since mafedine demonstrated robust behavioral effects in zebrafish - a sensitive vertebrate aquatic model, it is likely that it may modulate rodent and human behavior as well. Thus, further studies are needed to explore this possibility in detail, and whether it may foster clinical application of mafedine and related alpha-2 adrenergic agents.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Behavior, Animal/drug effects , Mafenide/pharmacology , Animals , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , Zebrafish
4.
Behav Processes ; 158: 200-210, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30468887

ABSTRACT

Aggression is a common agonistic behavior affecting social life and well-being of humans and animals. However, the underlying mechanisms of aggression remain poorly understood. For decades, studies of aggression have mostly focused on laboratory rodents. The growing importance of evolutionarily relevant, cross-species disease modeling necessitates novel model organisms to study aggression and its pathobiology. The zebrafish (Danio rerio) is rapidly becoming a new experimental model organism in neurobehavioral research. Zebrafish demonstrate high genetic and physiological homology with mammals, fully sequenced genome, ease of husbandry and testing, as well as rich, robust behavioral repertoire. As zebrafish present overt aggressive behaviors, here we focus on their behavioral models and discuss their utility in probing aggression neurobiology and its genetic, pharmacological and environmental modulation. We argue that zebrafish-based models represent an excellent translational tool to understand aggressive behaviors and related pathobiological brain mechanisms.


Subject(s)
Aggression/physiology , Behavior, Animal/physiology , Brain/physiology , Zebrafish/physiology , Animals
5.
Zebrafish ; 15(5): 425-432, 2018 10.
Article in English | MEDLINE | ID: mdl-30133416

ABSTRACT

Environmental stimuli are critical in preclinical research that utilizes laboratory animals to model human brain disorders. The main goal of environmental enrichment (EE) is to provide laboratory animals with better choice of activity and greater control over social and spatial stressors. Thus, in addition to being a useful experimental tool, EE becomes an important strategy for increasing the validity and reproducibility of preclinical data. Although zebrafish (Danio rerio) is rapidly becoming a promising new organism for neuroscience research, the role of EE in zebrafish central nervous system (CNS) models remains poorly understood. Here we discuss EE in preclinical studies using zebrafish and its influence on brain physiology and behavior. Improving our understanding of EE effects in this organism may enhance zebrafish data validity and reliability. Paralleling rodent EE data, mounting evidence suggests the growing importance of EE in zebrafish neurobehavioral models.


Subject(s)
Behavior, Animal , Brain Diseases/etiology , Environment , Models, Neurological , Zebrafish , Animals , Disease Models, Animal , Humans , Neuropsychological Tests , Stress, Psychological
6.
Neurochem Res ; 43(6): 1191-1199, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29740748

ABSTRACT

Amitriptyline is a commonly used tricyclic antidepressant (TCA) inhibiting serotonin and norepinephrine reuptake. The exact CNS action of TCAs remains poorly understood, necessitating new screening approaches and novel model organisms. Zebrafish (Danio rerio) are rapidly emerging as a promising tool for pharmacological research of antidepressants, including amitriptyline. Here, we examine the effects of chronic 2-week exposure to 10 and 50 µg/L amitriptyline on zebrafish behavior and monoamine neurotransmitters. Overall, the drug at 50 µg/L evoked pronounced anxiolytic-like effects in the novel tank test (assessed by more time in top, fewer transition and shorter latency to enter the top). Like other TCAs, amitriptyline reduced serotonin turnover, but also significantly elevated whole-brain norepinephrine and dopamine levels. The latter effect was not reported in this model previously, and accompanied higher brain expression of tyrosine hydroxylase (a rate-limiting enzyme of catecholamine biosynthesis), but unaltered expression of dopamine-ß-hydroxylase and monoamine oxidase (the enzymes of dopamine metabolism). This response may underlie chronic amitriptyline action on dopamine and norepinephrine neurotransmission, and contribute to the complex CNS profile of this drug observed both clinically and in animal models. Collectively, these findings also confirm the important role of monoamine modulation in the regulation of anxiety-related behavior in zebrafish, and support the utility of this organism as a promising in-vivo model for CNS drug screening.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Brain/drug effects , Synaptic Transmission/drug effects , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents, Tricyclic/pharmacology , Brain/metabolism , Nervous System Physiological Phenomena/drug effects , Neurochemistry/methods , Norepinephrine/metabolism , Tyrosine 3-Monooxygenase/metabolism , Zebrafish
7.
Article in English | MEDLINE | ID: mdl-29604314

ABSTRACT

The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.


Subject(s)
Central Nervous System/metabolism , Endocannabinoids/metabolism , Models, Animal , Receptors, Opioid/metabolism , Zebrafish/metabolism , Animals , Central Nervous System/drug effects
8.
Eur J Pharmacol ; 829: 129-140, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29627310

ABSTRACT

Antidepressant drugs are currently one of the most prescribed medications. In addition to treatment resistance and side effects of antidepressants, their clinical use is further complicated by antidepressant discontinuation syndrome (ADS). ADS is a common problem in patients following the interruption, dose reduction, or discontinuation of antidepressant drugs. Clinically, ADS resembles a classical drug withdrawal syndrome, albeit differing from it because antidepressants generally do not induce addiction. The growing clinical importance and prevalence of ADS necessitate novel experimental (animal) models of this disorder. Currently available preclinical models of ADS are mainly rodent-based, and study mostly serotonergic antidepressants and their combinations. Here, we systematically assess clinical ADS symptoms and discuss current trends and challenges in the field of experimental (animal) models of ADS. We also outline basic mechanisms underlying ADS pathobiology, evaluate its genetic, pharmacological and environmental determinants, and emphasize how using animal models may help generate important translational insights into human ADS condition, its prevention and therapy.


Subject(s)
Antidepressive Agents/adverse effects , Substance Withdrawal Syndrome/etiology , Animals , Disease Models, Animal , Humans
9.
Article in English | MEDLINE | ID: mdl-28847526

ABSTRACT

Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1ß and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1ß and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress.


Subject(s)
Behavior, Animal/physiology , Disease Models, Animal , Stress, Psychological/pathology , Stress, Psychological/physiopathology , Animals , Animals, Outbred Strains , Antidepressive Agents, Second-Generation/pharmacology , Anxiety/drug therapy , Anxiety/pathology , Anxiety/physiopathology , Behavior, Animal/drug effects , Chronic Disease , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dendritic Spines/pathology , Female , Fluoxetine/pharmacology , Male , Motor Activity/drug effects , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Stress, Psychological/drug therapy , Telencephalon/drug effects , Telencephalon/metabolism , Telencephalon/pathology , Time Factors , Uncertainty , Zebrafish , Zebrafish Proteins/metabolism
10.
Lab Anim (NY) ; 46(10): 378-387, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-28984854

ABSTRACT

The zebrafish (Danio rerio) is increasingly used in a broad array of biomedical studies, from cancer research to drug screening. Zebrafish also represent an emerging model organism for studying complex brain diseases. The number of zebrafish neuroscience studies is exponentially growing, significantly outpacing those conducted with rodents or other model organisms. Yet, there is still a substantial amount of resistance in adopting zebrafish as a first-choice model system. Studies of the repertoire of zebrafish neural and behavioral functions continue to reveal new opportunities for understanding the pathobiology of various CNS deficits. Although some of these models are well established in zebrafish, including models for anxiety, depression, and addiction, others are less recognized, for example, models of autism and obsessive-compulsive states. However, mounting data indicate that a wide spectrum of CNS diseases can be modeled in adult zebrafish. Here, we summarize recent findings using zebrafish CNS assays, discuss model limitations and the existing challenges, as well as outline future directions of research in this field.


Subject(s)
Central Nervous System Diseases , Disease Models, Animal , Zebrafish , Animals , Central Nervous System Diseases/etiology , Central Nervous System Diseases/pathology , Central Nervous System Diseases/physiopathology , Humans
11.
Expert Opin Drug Discov ; 12(10): 995-1009, 2017 10.
Article in English | MEDLINE | ID: mdl-28816544

ABSTRACT

INTRODUCTION: Depression, anxiety and other affective disorders are globally widespread and severely debilitating human brain diseases. Despite their high prevalence and mental health impact, affective pathogenesis is poorly understood, and often remains recurrent and resistant to treatment. The lack of efficient antidepressants and presently limited conceptual innovation necessitate novel approaches and new drug targets in the field of antidepressant therapy. Areas covered: Herein, the authors discuss the emerging role of neuro-immune interactions in affective pathogenesis, which can become useful targets for CNS drug discovery, including modulating neuroinflammatory pathways to alleviate affective pathogenesis. Expert opinion: Mounting evidence implicates microglia, polyunsaturated fatty acids (PUFAs), glucocorticoids and gut microbiota in both inflammation and depression. It is suggested that novel antidepressants can be developed based on targeting microglia-, PUFAs-, glucocorticoid- and gut microbiota-mediated cellular pathways. In addition, the authors call for a wider application of novel model organisms, such as zebrafish, in studying shared, evolutionarily conserved (and therefore, core) neuro-immune mechanisms of depression.


Subject(s)
Depression/drug therapy , Drug Discovery/methods , Inflammation/drug therapy , Animals , Antidepressive Agents/pharmacology , Depression/physiopathology , Disease Models, Animal , Drug Design , Humans , Inflammation/pathology , Molecular Targeted Therapy
12.
Zebrafish ; 14(3): 197-208, 2017 06.
Article in English | MEDLINE | ID: mdl-28459655

ABSTRACT

Modeling of stress and anxiety in adult zebrafish (Danio rerio) is increasingly utilized in neuroscience research and central nervous system (CNS) drug discovery. Representing the most commonly used zebrafish anxiety models, the novel tank test (NTT) focuses on zebrafish diving in response to potentially threatening stimuli, whereas the light-dark test (LDT) is based on fish scototaxis (innate preference for dark vs. bright areas). Here, we systematically evaluate the utility of these two tests, combining meta-analyses of published literature with comparative in vivo behavioral and whole-body endocrine (cortisol) testing. Overall, the NTT and LDT behaviors demonstrate a generally good cross-test correlation in vivo, whereas meta-analyses of published literature show that both tests have similar sensitivity to zebrafish anxiety-like states. Finally, NTT evokes higher levels of cortisol, likely representing a more stressful procedure than LDT. Collectively, our study reappraises NTT and LDT for studying anxiety-like states in zebrafish, and emphasizes their developing utility for neurobehavioral research. These findings can help optimize drug screening procedures by choosing more appropriate models for testing anxiolytic or anxiogenic drugs.


Subject(s)
Anxiety/psychology , Conflict, Psychological , Motor Activity/physiology , Zebrafish/physiology , Animals , Behavior, Animal , Darkness , Disease Models, Animal , Hydrocortisone/analysis , Light , Stress, Psychological
13.
Neurotoxicol Teratol ; 62: 27-33, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28438663

ABSTRACT

The need to develop novel antidepressants is an emerging problem in biomedicine. An aquatic vertebrate species, the zebrafish (Danio rerio) may serve as a useful in-vivo screen for CNS drugs, and displays high sensitivity to a wide range of antidepressants. Amitriptyline is a commonly used tricyclic antidepressant which acts primarily as a serotonin and noradrenaline reuptake inhibitor. Here, we characterize drug-induced behavioral and neurochemical responses in adult zebrafish following their acute exposure to amitriptyline. Overall, the drug at 1 and 5mg/L significantly increased time spent in top and shortened the latency to enter it, thereby paralleling recent reports on zebrafish 'serotonin toxicity-like behavior' caused by various serotonergic agents. The 10mg/L dose of the drug also significantly decreased top entries and maximal velocity and evoked overt ataxia, likely due to emerging non-specific toxic effects. Amitriptyline at 5 and 10mg/L also dose-dependently increased serotonin turnover, but not noradrenaline levels, in zebrafish whole-brain samples. Overall, zebrafish high sensitivity to acute effects of amitriptyline can help improve our understanding of psychopharmacological profiles of this compound and the related CNS drugs, and contributes further to the development of aquatic experimental models of human toxidromes.


Subject(s)
Amitriptyline/toxicity , Antidepressive Agents, Tricyclic/toxicity , Behavior, Animal/drug effects , Drug Evaluation, Preclinical/methods , Animals , Disease Models, Animal , Female , Humans , Male , Motor Activity/drug effects , Swimming , Zebrafish
15.
Br J Pharmacol ; 174(13): 1925-1944, 2017 07.
Article in English | MEDLINE | ID: mdl-28217866

ABSTRACT

Despite the high prevalence of neuropsychiatric disorders, their aetiology and molecular mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as a powerful animal model in neuropharmacology research and in vivo drug screening. Collectively, this makes zebrafish a useful tool for drug discovery and the identification of disordered molecular pathways. Here, we discuss zebrafish models of selected human neuropsychiatric disorders and drug-induced phenotypes. As well as covering a broad range of brain disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent developments in zebrafish genetics and small molecule screening, which markedly enhance the disease modelling and the discovery of novel drug targets.


Subject(s)
Central Nervous System Agents/therapeutic use , Central Nervous System Diseases/drug therapy , Disease Models, Animal , Drug Discovery , Small Molecule Libraries/therapeutic use , Animals , Central Nervous System Agents/chemical synthesis , Central Nervous System Agents/chemistry , Drug Evaluation, Preclinical , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Zebrafish
16.
Behav Processes ; 141(Pt 2): 229-241, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27919782

ABSTRACT

Zebrafish (Danio rerio) are rapidly becoming a popular model organism in translational and cognitive neuroscience research. Both larval and adult zebrafish continue to increase our understanding of cognitive mechanisms and their genetic and pharmacological modulation. Here, we discuss the developing utility of zebrafish in understanding cognitive phenotypes and their deficits, relevant to a wide range human brain disorders. We also discuss the potential of zebrafish models for high-throughput genetic mutant and small molecule screening (e.g., amnestics, cognitive enhancers, neurodevelopmental/neurodegenerative drugs), which becomes critical for identifying novel candidate genes and molecular drug targets to treat cognitive deficits. In addition to discussing the existing challenges and future strategic directions in this field, we emphasize how zebrafish models of cognitive phenotypes continue to form an interesting and rapidly emerging new field in neuroscience.


Subject(s)
Cognition Disorders/physiopathology , Cognition/physiology , Phenotype , Animals , Disease Models, Animal , Zebrafish
18.
Oncotarget ; 7(16): 22050-63, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26959111

ABSTRACT

The chaperone system based on Hsp70 and proteins of the DnaJ family is known to protect tumor cells from a variety of cytotoxic factors, including anti-tumor therapy. To analyze whether this also functions in a highly malignant brain tumor, we knocked down the expression of Hsp70 (HSPA1A) and its two most abundant co-chaperones, Hdj1 (DNAJB1) and Hdj2 (DNAJA1) in a C6 rat glioblastoma cell line. As expected, tumor depletion of Hsp70 caused a substantial reduction in its growth rate and increased the survival of tumor-bearing animals, whereas the reduction of Hdj1 expression had no effect. Unexpectedly, a reduction in the expression of Hdj2 led to the enhanced aggressiveness of the C6 tumor, demonstrated by its rapid growth, metastasis formation and a 1.5-fold reduction in the lifespan of tumor-bearing animals. The in vitro reduction of Hdj2 expression reduced spheroid density and simultaneously enhanced the migration and invasion of C6 cells. At the molecular level, a knock-down of Hdj2 led to the relocation of N-cadherin and the enhanced activity of metalloproteinases 1, 2, 8 and 9, which are markers of highly malignant cancer cells. The changes in the actin cytoskeleton in Hdj2-depleted cells indicate that the protein is also important for prevention of the amoeboid-like transition of tumor cells. The results of this study uncover a completely new role for the Hdj2 co-chaperone in tumorigenicity and suggest that the protein is a potential drug target.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , HSP40 Heat-Shock Proteins/metabolism , Animals , Cell Line, Tumor , Cell Movement/physiology , Cell Proliferation/physiology , Gene Knockdown Techniques , HSP70 Heat-Shock Proteins/metabolism , Male , Neoplasm Invasiveness/pathology , Rats , Rats, Wistar
19.
Cancer Immunol Immunother ; 65(1): 83-92, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26646850

ABSTRACT

Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma.


Subject(s)
HSP70 Heat-Shock Proteins/immunology , Immunotherapy/methods , Melanoma/immunology , Microscopy, Confocal/methods , Phloretin/immunology , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred C57BL , Skin Neoplasms , Melanoma, Cutaneous Malignant
20.
Cell Stress Chaperones ; 20(2): 343-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25387797

ABSTRACT

Chaperone Hsp70 can cross the plasma membrane of living cells using mechanisms that so far have not received much research attention. Searching the part of the molecule that is responsible for transport ability of Hsp70, we found a cationic sequence composed of 20 amino acid residues on its surface, KST peptide, which was used in further experiments. We showed that KST peptide enters living cells of various origins with the same efficiency as the full-length chaperone. KST peptide is capable of carrying cargo with a molecular weight 30 times greater than its own into cells. When we compared the membrane-crossing activity of KST peptide in complex with Avidin (KST-Av complex) with that of similarly linked canonical TAT peptide, we found that TAT peptide penetrated SK-N-SH human neuroblastoma cells at a similar rate and efficiency as the KST peptide. Furthermore, KST peptide can carry protein complexes consisting of a specific antibody coupled to the peptide through the Avidin bridge. An antibody to Hsp70 delivered to SK-N-SH cells with high expression level of Hsp70 reduced the protective power of the chaperone and sensitized the cells to the pro-apoptotic effect of staurosporine. We studied the mechanisms of penetration of KST-Av and full-length Hsp70 inside human neuroblastoma SK-N-SH and human erythroleukemia K-562 cells and found that both used an active intracellular transport mechanism that included vesicular structures and negatively charged lipid membrane domains. Competition analysis of intracellular transport showed that the chaperone reduced intracellular penetration of KST peptide and conversely KST peptide prevented Hsp70 transport in a dose-dependent manner.


Subject(s)
Cell-Penetrating Peptides/metabolism , HSP70 Heat-Shock Proteins/metabolism , 3T3 Cells , Amino Acid Sequence , Animals , Antibodies/immunology , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/immunology , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/genetics , Humans , K562 Cells , Mice , Microscopy, Confocal , Molecular Sequence Data , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...