Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1832(3): 387-90, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23261987

ABSTRACT

Until recently it was assumed that the transketolase-like protein (TKTL1) detected in the tumor tissue, is catalytically active mutant form of human transketolase (hTKT). Human TKT shares 61% sequence identity with TKTL1. And the two proteins are 77% homologous at the amino acid level. The major difference is the absence of 38 amino acid residues in the N-terminal region of TKTL1. Site-specific mutagenesis was used for modifying hTKT gene; the resulting construct had a 114-bp deletion corresponding to a deletion of 38 amino acid residues in hTKT protein. Wild type hTKT and mutant variant (DhTKT) were expressed in Escherichia coli and isolated using Ni-agarose affinity chromatography. We have demonstrated here that DhTKT is devoid of transketolase activity and lacks bound thiamine diphosphate (ThDP). In view of these results, it is unlikely that TKTL1 may be a ThDP-dependent protein capable of catalyzing the transketolase reaction, as hypothesized previously.


Subject(s)
Mutant Proteins/metabolism , Recombinant Proteins/metabolism , Thiamine Pyrophosphate/metabolism , Transketolase/metabolism , Electrophoresis, Polyacrylamide Gel , Humans , Kinetics , Mutagenesis, Site-Directed , Mutation , Transketolase/genetics
2.
Biochem Biophys Res Commun ; 366(3): 692-7, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18070592

ABSTRACT

Transketolase from Saccharomyces cerevisiae exhibits a rarely reported activity with a methylated analogue of the native cofactor, 4'-methylamino-thiamin diphosphate. We demonstrated the kinetic stability of the dihydroxyethyl carbanion/enamine intermediate to be dependent on the functionality of the 4'-aminopyrimidine moiety of thiamin diphosphate [R. Golbik, L.E. Meshalkina, T. Sandalova, K. Tittmann, E. Fiedler, H. Neef, S. König, R. Kluger, G.A. Kochetov, G. Schneider, G. Hübner, Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisae, FEBS J. (2005) 272 1326-1342]. This paper extends these investigations of the function of the coenzyme's aminopyrimidine in transketolase catalysis exemplified for the 4'-monomethylamino-thiamin diphosphate analogue. Here, we report near UV circular dichroism data and NMR-based analysis of reaction intermediates that give evidence for a strong destabilisation of the carbanion/enamine of DHE-4'-monomethylamino-thiamin diphosphate on the enzyme. A new negative band in near UV circular dichroism arising during turnover is attributed to the conjugate acid of the carbanion/enamine intermediate, an assignment additionally corroborated by (1)H NMR-based intermediate analysis. As opposed to the kinetically stabilized carbanion/enamine intermediate in transketolase when reconstituted with the native cofactor, DHE-4'-monomethylamino-thiamin diphosphate is rapidly released from the active centers during turnover and accumulates in the medium on a preparative scale.


Subject(s)
Saccharomyces cerevisiae Proteins/chemistry , Thiamine/chemistry , Transketolase/chemistry , Binding Sites , Catalysis , Enzyme Activation , Isoenzymes/chemistry , Protein Binding
3.
Life Sci ; 78(1): 8-13, 2005 Nov 19.
Article in English | MEDLINE | ID: mdl-16125202

ABSTRACT

In studying transketolase (TK) from Saccharomyces cerevisiae, the majority of researchers use as cofactors Mg(2+) and thiamine diphosphate (ThDP) (by analogy with other ThDP-dependent enzymes), whereas the active site of native holoTK is known to contain only Ca(2+). Experiments in which Mg(2+) was substituted for Ca(2+) demonstrated that the kinetic properties of TK varied with the bivalent cation cofactor. This led to the assumption that TK species obtained by reconstitution from apoTK and ThDP in the presence of Ca(2+) or Mg(2+), respectively, adopt different conformations. Kinetic study of the H103A mutant yeast transketolase. FEBS Letters 567, 270-274]. Analysis of far-UV circular dichroism (CD) spectra and of data, obtained using methods of thermal denaturing, differential scanning calorimetry (DSC) and tryptophan fluorescence spectroscopy, corroborated this assumption. Indeed, the ratios of secondary structure elements in the molecule of apoTK, recorded in the presence of Ca(2+) or Mg(2+), respectively, turned out to be different. The two forms of the holoenzyme, obtained by reconstitution from apoTK and ThDP in the presence of Ca(2+) or Mg(2+), respectively, also differed in stability: the holoenzyme was more stable in the presence of Ca(2+) than Mg(2+).


Subject(s)
Coenzymes/chemistry , Transketolase/chemistry , Calorimetry, Differential Scanning , Cations/chemistry , Circular Dichroism , Kinetics , Models, Molecular , Protein Conformation , Protein Denaturation , Saccharomyces cerevisiae/enzymology , Spectrometry, Fluorescence , Temperature , Tryptophan/chemistry
4.
Bioinformatics ; 21(17): 3558-64, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16002431

ABSTRACT

MOTIVATION: Addition of labeled substrates and the measurement of the subsequent distribution of the labels in isotopomers in reaction networks provide a unique method for assessing metabolic fluxes in whole cells. However, owing to insufficiency of information, attempts to quantify the fluxes often yield multiple possible sets of solutions that are consistent with a given experimental pattern of isotopomers. In the study of the pentose phosphate pathways, the need to consider isotope exchange reactions of transketolase (TK) and transaldolase (TA) (which in past analyses have often been ignored) magnifies this problem; but accounting for the interrelation between the fluxes known from biochemical studies and kinetic modeling solves it. The mathematical relationships between kinetic and equilibrium constants restrict the domain of estimated fluxes to the ones compatible not only with a given set of experimental data, but also with other biochemical information. METHOD: We present software that integrates kinetic modeling with isotopomer distribution analysis. It solves the ordinary differential equations for total concentrations (accounting for the kinetic mechanisms) as well as for all isotopomers in glycolysis and the pentose phosphate pathway (PPP). In the PPP the fluxes created in the TK and TA reactions are expressed through unitary rate constants. The algorithms that account for all the kinetic and equilbrium constant constraints are integrated with the previously developed algorithms, which have been further optimized. The most time-consuming calculations were programmed directly in assembly language; this gave an order of magnitude decrease in the computation time, thus allowing analysis of more complex systems. The software was developed as C-code linked to a program written in Mathematica (Wolfram Research, Champaign, IL), and also as a C++ program independent from Mathematica. RESULTS: Implementing constraints imposed by kinetic and equilibrium constants in the isotopomer distribution analysis in the data from the cancer cells eliminated estimates of fluxes that were inconsistent with the kinetic mechanisms of TK and TA. Fluxes measured experimentally in cells can be used to estimate better the kinetics of TK and TA as they operate in situ. Thus, our approach of integrating various methods for in situ flux analysis opens up the possibility of designing new types of experiments to probe metabolic interrelationships, including the incorporation of additional biochemical information. AVAILABILITY: Software is available freely at: http://www.bq.ub.es/bioqint/selivanov.htm CONTACT: martacascante@ub.edu


Subject(s)
Algorithms , Gene Expression Profiling/methods , Glucose/metabolism , Models, Biological , Pentose Phosphate Pathway/physiology , Transaldolase/metabolism , Transketolase/metabolism , Carbon Radioisotopes , Computer Simulation , Enzyme Activation , HT29 Cells , Humans , Isotope Labeling/methods , Kinetics , Multienzyme Complexes/metabolism , Software
5.
Anal Biochem ; 342(1): 126-33, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15958189

ABSTRACT

Acetohydroxy acid synthase (AHAS) and related enzymes catalyze the production of chiral compounds [(S)-acetolactate, (S)-acetohydroxybutyrate, or (R)-phenylacetylcarbinol] from achiral substrates (pyruvate, 2-ketobutyrate, or benzaldehyde). The common methods for the determination of AHAS activity have shortcomings. The colorimetric method for detection of acyloins formed from the products is tedious and does not allow time-resolved measurements. The continuous assay for consumption of pyruvate based on its absorbance at 333 nm, though convenient, is limited by the extremely small extinction coefficient of pyruvate, which results in a low signal-to-noise ratio and sensitivity to interfering absorbing compounds. Here, we report the use of circular dichroism spectroscopy for monitoring AHAS activity. This method, which exploits the optical activity of reaction products, displays a high signal-to-noise ratio and is easy to perform both in time-resolved and in commercial modes. In addition to AHAS, we examined the determination of activity of glyoxylate carboligase. This enzyme catalyzes the condensation of two molecules of glyoxylate to chiral tartronic acid semialdehyde. The use of circular dichroism also identifies the product of glyoxylate carboligase as being in the (R) configuration.


Subject(s)
Acetolactate Synthase/analysis , Acetolactate Synthase/antagonists & inhibitors , Acetolactate Synthase/metabolism , Carboxy-Lyases/metabolism , Circular Dichroism/methods , Escherichia coli/enzymology , Glyoxylates/pharmacology , Lactates/metabolism , Pyruvic Acid/metabolism , Stereoisomerism , Valine/pharmacology
6.
FEBS J ; 272(6): 1326-42, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15752351

ABSTRACT

Transketolase from baker's yeast is a thiamin diphosphate-dependent enzyme in sugar metabolism that reconstitutes with various analogues of the coenzyme. The methylated analogues (4'-methylamino-thiamin diphosphate and N1'-methylated thiamin diphosphate) of the native cofactor were used to investigate the function of the aminopyrimidine moiety of the coenzyme in transketolase catalysis. For the wild-type transketolase complex with the 4'-methylamino analogue, no electron density was found for the methyl group in the X-ray structure, whereas in the complex with the N1'-methylated coenzyme the entire aminopyrimidine ring was disordered. This indicates a high flexibility of the respective parts of the enzyme-bound thiamin diphosphate analogues. In the E418A variant of transketolase reconstituted with N1'-methylated thiamin diphosphate, the electron density of the analogue was well defined and showed the typical V-conformation found in the wild-type holoenzyme [Lindqvist Y, Schneider G, Ermler U, Sundstrom M (1992) EMBO J11, 2373-2379]. The near-UV CD spectrum of the variant E418A reconstituted with N1'-methylated thiamin diphosphate was identical to that of the wild-type holoenzyme, while the CD spectrum of the variant combined with the unmodified cofactor did not overlap with that of the native protein. The activation of the analogues was measured by the H/D-exchange at C2. Methylation at the N1' position of the cofactor activated the enzyme-bound cofactor analogue (as shown by a fast H/D-exchange rate constant). The absorbance changes in the course of substrate turnover of the different complexes investigated (transient kinetics) revealed the stability of the alpha-carbanion/enamine as the key intermediate in cofactor action to be dependent on the functionality of the 4-aminopyrimidine moiety of thiamin diphosphate.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transketolase/genetics , Transketolase/metabolism , Amino Acid Substitution , Binding Sites , Crystallography, X-Ray , Kinetics , Mutation, Missense , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Spectrophotometry, Ultraviolet , Substrate Specificity , Transketolase/chemistry
7.
Eur J Biochem ; 271(21): 4189-94, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15511224

ABSTRACT

The influence of substrates on the interaction of apotransketolase with thiamin diphosphate was investigated in the presence of magnesium ions. It was shown that the donor substrates, but not the acceptor substrates, enhance the affinity of the coenzyme either to only one active center of transketolase or to both active centers, but to different degrees in each, resulting in a negative cooperativity for coenzyme binding. In the absence of donor substrate, negative cooperativity is not observed. The donor substrate did not affect the interaction of the apoenzyme with the inactive coenzyme analogue, N3'-pyridyl-thiamin diphosphate. The influence of the donor substrate on the coenzyme-apotransketolase interaction was predicted as a result of formation of the transketolase reaction intermediate 2-(alpha,beta-dihydroxyethyl)-thiamin diphosphate, which exhibited a higher affinity to the enzyme than thiamin diphosphate. The enhancement of thiamin diphosphate's affinity to apotransketolase in the presence of donor substrate is probably one of the mechanisms underlying the substrate-affected transketolase regulation at low coenzyme concentrations.


Subject(s)
Gene Expression Regulation, Enzymologic , Transketolase/chemistry , Transketolase/metabolism , Binding Sites , Buffers , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Ions , Kinetics , Magnesium/chemistry , Magnesium Chloride/chemistry , Models, Chemical , Protein Binding , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Spectrophotometry , Temperature , Thiamine Pyrophosphate/chemistry , Time Factors
8.
FEBS Lett ; 567(2-3): 270-4, 2004 Jun 04.
Article in English | MEDLINE | ID: mdl-15178335

ABSTRACT

Data from site-directed mutagenesis and X-ray crystallography show that His103 of holotransketolase (holoTK) does not come into contact with thiamin diphosphate (ThDP) but stabilizes the transketolase (TK) reaction intermediate, alpha,beta-dihydroxyethyl-thiamin diphosphate, by forming a hydrogen bond with the oxygen of its beta-hydroxyethyl group [Eur. J. Biochem. 233 (1995) 750; Proc. Natl. Acad. Sci. USA 99 (2002) 591]. We studied the influence of His103 mutation on ThDP-binding and enzymatic activity. It was found that mutation does not affect the affinity of the coenzyme to apotransketolase (apoTK) in the presence of Ca(2+) (a cation found in the native holoenzyme) but changes all the kinetic parameters of the ThDP-apoTK interaction in the presence of Mg(2+) (a cation commonly used in ThDP-dependent enzymes studies). It was concluded that the structures of TK active centers formed in the presence of Mg(2+) and Ca(2+) are not identical. Mutation of His103 led to a significant acceleration of the one-substrate reaction but a slow down of the two-substrate reaction so that the rates of both types of catalysis became equal. Our results provide evidence for the intermediate-stabilizing function of His103.


Subject(s)
Saccharomyces cerevisiae/enzymology , Transketolase/genetics , Transketolase/metabolism , Alanine/genetics , Amino Acid Substitution , Binding Sites , Calcium/chemistry , Calcium/metabolism , Dimerization , Histidine/genetics , Holoenzymes/chemistry , Holoenzymes/metabolism , Kinetics , Magnesium/chemistry , Magnesium/metabolism , Mutagenesis, Site-Directed , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Substrate Specificity , Thiamine Pyrophosphate/metabolism
9.
Biochem Biophys Res Commun ; 294(1): 155-60, 2002 May 31.
Article in English | MEDLINE | ID: mdl-12054756

ABSTRACT

It has long been known that formation of a catalytically active holotransketolase from the apoenzyme and coenzyme (thiamin diphosphate) is accompanied by the appearance of a new band, in both the absorption and CD spectra. Binding and subsequent conversion of the substrates bring about changes in this band's intensity. The observation of these changes allows the investigator to monitor the coenzyme-to-apoenzyme binding and the conversion of substrates during the transketolase reaction and thus to kinetically characterize its individual steps. The origin of the thiamin diphosphate induced absorption band has been postulated to be resulted from formation of a charge transfer complex or alternatively from an induced conformational transition of the enzyme. The latter brings aromatic amino acid residues into close proximity and generates the absorption. However, X-ray crystallographic and enzyme point mutation experiments cast doubts on both of these hypotheses. Here we show that the binding of thiamin diphosphate to the apotransketolase leads to the conversion of the 4'-amino tautomeric form of its aminopyrimidine ring into the N(1')H-imino tautomeric form. This imino form emerges as a result of the coenzyme's aminopyrymidine ring incorporation into the hydrophobic pocket of the transketolase active center and is stabilized through the interactions with Glu418 and Phe445 residues. The N(1')H-imino tautomeric form of thiamin diphosphate is thought to be the origin of the holotransketolase absorption band induced through the coenzyme binding.


Subject(s)
Thiamine Pyrophosphate/metabolism , Transketolase/metabolism , Catalysis , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Models, Molecular , Protein Conformation , Saccharomyces cerevisiae/enzymology , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...